Suppr超能文献

实时连续血糖监测数据和预测性警报对缓解血糖反跳的作用。

Mitigation of Rebound Hyperglycemia With Real-Time Continuous Glucose Monitoring Data and Predictive Alerts.

机构信息

Dexcom, Inc., San Diego, CA, USA.

Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

出版信息

J Diabetes Sci Technol. 2022 May;16(3):677-682. doi: 10.1177/1932296820982584. Epub 2021 Jan 5.

Abstract

BACKGROUND

Excess carbohydrate intake during hypoglycemia can lead to rebound hyperglycemia (RH). We investigated associations between RH and use of real-time continuous glucose monitoring (rtCGM) and an rtCGM system's predictive alert.

METHODS

RH events were series of sensor glucose values (SGVs) >180 mg/dL starting within two hours of an antecedent SGV <70 mg/dL. Events were characterized by their frequency, duration (consecutive SGVs >180 mg/dL × five minutes), and severity (area under the glucose concentration-time curve). To assess the impact of rtCGM, data gathered during the four-week baseline phase (without rtCGM) and four-week follow-up phase (with rtCGM) from 75 participants in the HypoDE clinical trial (NCT02671968) of hypoglycemia-unaware individuals were compared. To assess the impact of predictive alerts, we identified a convenience sample of 24 518 users of an rtCGM system without predictive alerts who transitioned to a system whose predictive alert signals an SGV ≤55 mg/dL within 20 minutes (Dexcom G5 and G6, respectively). RH events from periods of blinded versus unblinded rtCGM wear and from periods of G5 and G6 wear were compared with paired t tests.

RESULTS

Compared to RH events in the HypoDE baseline phase, the mean frequency, duration, and severity of events fell by 14%, 12%, and 23%, respectively, in the follow-up phase (all < .05). Compared to RH events during G5 use, the mean frequency, duration, and severity of events fell by 7%, 8%, and 13%, respectively, during G6 use (all < .001).

CONCLUSIONS

Rebound hypreglycemia can be objectively quantified and mitigated with rtCGM and rtCGM-based predictive alerts.

摘要

背景

低血糖期间摄入过多碳水化合物可导致血糖反跳性升高(RH)。我们研究了 RH 与实时连续血糖监测(rtCGM)的使用以及 rtCGM 系统预测性警报之间的关系。

方法

RH 事件是指在先前的 SGV <70mg/dL 后两小时内开始的一系列传感器血糖值(SGV)>180mg/dL。这些事件的特征是其频率、持续时间(连续 SGV >180mg/dL×五分钟)和严重程度(血糖浓度时间曲线下面积)。为了评估 rtCGM 的影响,比较了 HypoDE 临床试验(NCT02671968)中 75 名低血糖无知个体的四周基线期(无 rtCGM)和四周随访期(有 rtCGM)期间的数据。为了评估预测性警报的影响,我们从没有预测性警报的 rtCGM 系统的 24518 名用户中选择了一个方便的样本,这些用户过渡到了一个系统,该系统在 20 分钟内发出预测性警报,表明 SGV≤55mg/dL(分别为 Dexcom G5 和 G6)。使用配对 t 检验比较了 rtCGM 佩戴的盲法与非盲法期间以及 G5 和 G6 佩戴期间的 RH 事件。

结果

与 HypoDE 基线期的 RH 事件相比,随访期的事件频率、持续时间和严重程度分别降低了 14%、12%和 23%(均<0.05)。与 G5 使用期间的 RH 事件相比,G6 使用期间的事件频率、持续时间和严重程度分别降低了 7%、8%和 13%(均<0.001)。

结论

使用 rtCGM 和基于 rtCGM 的预测性警报可以客观地量化和减轻 RH。

相似文献

1
Mitigation of Rebound Hyperglycemia With Real-Time Continuous Glucose Monitoring Data and Predictive Alerts.
J Diabetes Sci Technol. 2022 May;16(3):677-682. doi: 10.1177/1932296820982584. Epub 2021 Jan 5.
2
Real-World Hypoglycemia Avoidance with a Continuous Glucose Monitoring System's Predictive Low Glucose Alert.
Diabetes Technol Ther. 2019 Apr;21(4):155-158. doi: 10.1089/dia.2018.0359. Epub 2019 Mar 22.
8
Real-World Hypoglycemia Avoidance With a Predictive Low Glucose Alert Does Not Depend on Frequent Screen Views.
J Diabetes Sci Technol. 2020 Jan;14(1):83-86. doi: 10.1177/1932296819840691. Epub 2019 Apr 3.

引用本文的文献

1
The Effect of 50% Dextrose on Serum Glucose Levels in Adult Hypoglycemic Patients: A Prospective Observational Study.
Cureus. 2025 Mar 10;17(3):e80375. doi: 10.7759/cureus.80375. eCollection 2025 Mar.
2
Insulinoma Unmasked: A Continuous Glucose Monitoring-Fueled Journey.
Curr Oncol. 2024 Sep 14;31(9):5452-5461. doi: 10.3390/curroncol31090403.
3
Nocturnal Hypoglycemia in the Era of Continuous Glucose Monitoring.
J Diabetes Sci Technol. 2024 Sep;18(5):1052-1060. doi: 10.1177/19322968241267823. Epub 2024 Aug 19.
6
Integration of a Safety Module to Prevent Rebound Hypoglycemia in Closed-Loop Artificial Pancreas Systems.
J Diabetes Sci Technol. 2024 Mar;18(2):318-323. doi: 10.1177/19322968231212205. Epub 2023 Nov 15.
7
Rebound Hypoglycemia and Hyperglycemia in Type 1 Diabetes.
J Diabetes Sci Technol. 2024 Nov;18(6):1392-1398. doi: 10.1177/19322968231168379. Epub 2023 May 3.
9
Characterization of Post-Hypoglycemic Hyperglycemia in Children and Adolescents With Type 1 Diabetes: The EPHICA Study.
Front Endocrinol (Lausanne). 2022 Jun 27;13:887976. doi: 10.3389/fendo.2022.887976. eCollection 2022.

本文引用的文献

3
Assessment of Glucose Control Metrics by Discriminant Ratio.
Diabetes Technol Ther. 2020 Oct;22(10):719-726. doi: 10.1089/dia.2019.0415.
5
Experimental non-severe hypoglycaemia substantially impairs cognitive function in type 2 diabetes: a randomised crossover trial.
Diabetologia. 2019 Oct;62(10):1948-1958. doi: 10.1007/s00125-019-4964-4. Epub 2019 Jul 31.
6
Improved Real-World Glycemic Control With Continuous Glucose Monitoring System Predictive Alerts.
J Diabetes Sci Technol. 2021 Jan;15(1):91-97. doi: 10.1177/1932296819859334. Epub 2019 Jul 4.
8
Real-World Hypoglycemia Avoidance with a Continuous Glucose Monitoring System's Predictive Low Glucose Alert.
Diabetes Technol Ther. 2019 Apr;21(4):155-158. doi: 10.1089/dia.2018.0359. Epub 2019 Mar 22.
9
Impaired glucagon secretion in patients with fulminant type 1 diabetes mellitus.
Endocrine. 2019 Mar;63(3):476-479. doi: 10.1007/s12020-018-1750-x. Epub 2018 Sep 10.
10
Glycaemic variability in diabetes: clinical and therapeutic implications.
Lancet Diabetes Endocrinol. 2019 Mar;7(3):221-230. doi: 10.1016/S2213-8587(18)30136-0. Epub 2018 Aug 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验