文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于深度学习的自动参考肾脏组织形态计量学与患者人口统计学和肌酐的相关性。

Correlating Deep Learning-Based Automated Reference Kidney Histomorphometry with Patient Demographics and Creatinine.

机构信息

J. Crayton Pruitt Family, Department of Biomedical Engineering, University of Florida Herbert Wertheim College of Engineering, Gainesville, Florida.

Departments of Pathology and Anatomical Sciences, University at Buffalo Jacobs School of Medicine and Biomedical Sciences - The State University of New York, Buffalo, New York.

出版信息

Kidney360. 2023 Dec 1;4(12):1726-1737. doi: 10.34067/KID.0000000000000299. Epub 2023 Nov 14.


DOI:10.34067/KID.0000000000000299
PMID:37966063
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10758512/
Abstract

KEY POINTS: The authors leverage the unique benefits of panoptic segmentation to perform the largest ever quantitation of reference kidney morphometry. Kidney features vary with age and sex; and glomeruli size may intricately link to creatinine, defying prior notions. BACKGROUND: Reference histomorphometric data of healthy human kidneys are largely lacking because of laborious quantitation requirements. Correlating histomorphometric features with clinical parameters through machine learning approaches can provide valuable information about natural population variance. To this end, we leveraged deep learning (DL), computational image analysis, and feature analysis to associate the relationship of histomorphometry with patient age, sex, serum creatinine (SCr), and eGFR in a multinational set of reference kidney tissue sections. METHODS: A panoptic segmentation neural network was developed and used to segment viable and sclerotic glomeruli, cortical and medullary interstitia, tubules, and arteries/arterioles in the digitized images of 79 periodic acid–Schiff-stained human nephrectomy sections showing minimal pathologic changes. Simple morphometrics (, area, radius, density) were quantified from the segmented classes. Regression analysis aided in determining the association of histomorphometric parameters with age, sex, SCr, and eGFR. RESULTS: Our DL model achieved high segmentation performance for all test compartments. The size and density of glomeruli, tubules, and arteries/arterioles varied significantly among healthy humans, with potentially large differences between geographically diverse patients. Glomerular size was significantly correlated with SCr and eGFR. Slight, albeit significant, differences in renal vasculature were observed between sexes. Glomerulosclerosis percentage increased, and cortical density of arteries/arterioles decreased, as a function of increasing age. CONCLUSIONS: Using DL, we automated precise measurements of kidney histomorphometric features. In the reference kidney tissue, several histomorphometric features demonstrated significant correlation to patient demographics, SCr, and eGFR. DL tools can increase the efficiency and rigor of histomorphometric analysis.

摘要

要点:作者利用全景分割的独特优势,对参考肾脏形态计量学进行了迄今为止最大规模的定量分析。肾脏特征随年龄和性别而变化;肾小球大小可能与肌酐错综复杂地相关联,这有悖于先前的观念。

背景:由于定量要求繁琐,健康人类肾脏的参考组织形态计量学数据在很大程度上仍然缺乏。通过机器学习方法将组织形态计量学特征与临床参数相关联,可以提供有关自然人群变异性的有价值信息。为此,我们利用深度学习(DL)、计算图像分析和特征分析,在一组多国家的参考肾脏组织切片中,将组织形态计量学与患者年龄、性别、血清肌酐(SCr)和 eGFR 相关联。

方法:开发了全景分割神经网络,并将其用于分割数字化图像中的有活力和硬化的肾小球、皮质和髓质间质、肾小管以及动脉/小动脉。这些图像来自 79 例经周期性酸-Schiff 染色的人类肾切除术切片,显示出最小的病理变化。从分割的类中量化了简单的形态计量学(,面积、半径、密度)。回归分析有助于确定组织形态计量学参数与年龄、性别、SCr 和 eGFR 的关联。

结果:我们的 DL 模型在所有测试隔室中都实现了出色的分割性能。在健康人群中,肾小球、肾小管和动脉/小动脉的大小和密度存在显著差异,不同地理位置的患者之间可能存在较大差异。肾小球大小与 SCr 和 eGFR 显著相关。在性别之间观察到肾脏血管系统的轻微但显著的差异。肾小球硬化百分比随年龄增长而增加,动脉/小动脉皮质密度随年龄增长而降低。

结论:使用 DL,我们实现了对肾脏组织形态计量学特征的精确自动测量。在参考肾脏组织中,一些组织形态计量学特征与患者人口统计学、SCr 和 eGFR 显著相关。DL 工具可以提高组织形态计量学分析的效率和严格性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/762c7272f29c/kidney360-4-1726-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/a1a5cbcab128/kidney360-4-1726-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/35f6cbeacd78/kidney360-4-1726-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/ededd5c9ee3b/kidney360-4-1726-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/3e6c56041674/kidney360-4-1726-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/762c7272f29c/kidney360-4-1726-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/a1a5cbcab128/kidney360-4-1726-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/35f6cbeacd78/kidney360-4-1726-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/ededd5c9ee3b/kidney360-4-1726-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/3e6c56041674/kidney360-4-1726-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0349/10758512/762c7272f29c/kidney360-4-1726-g005.jpg

相似文献

[1]
Correlating Deep Learning-Based Automated Reference Kidney Histomorphometry with Patient Demographics and Creatinine.

Kidney360. 2023-12-1

[2]
Correlating Deep Learning-Based Automated Reference Kidney Histomorphometry with Patient Demographics and Creatinine.

bioRxiv. 2023-5-18

[3]
A Deep Learning Approach for the Estimation of Glomerular Filtration Rate.

IEEE Trans Nanobioscience. 2022-10

[4]
Accuracy of glomerular filtration rate estimation using creatinine and cystatin C for identifying and monitoring moderate chronic kidney disease: the eGFR-C study.

Health Technol Assess. 2024-7

[5]
UroAngel: a single-kidney function prediction system based on computed tomography urography using deep learning.

World J Urol. 2024-4-16

[6]
Automated Reference Kidney Histomorphometry using a Panoptic Segmentation Neural Network Correlates to Patient Demographics and Creatinine.

Proc SPIE Int Soc Opt Eng. 2023-2

[7]
Racial Demographics in Glomerular Filtration Rate Estimating Equations.

Clin Chem. 2020-12-1

[8]
Examination of alternative eGFR definitions on the performance of deep learning models for detection of chronic kidney disease from fundus photographs.

PLoS One. 2023

[9]
Deep learning body-composition analysis of clinically acquired CT-scans estimates creatinine excretion with high accuracy in patients and healthy individuals.

Sci Rep. 2022-5-30

[10]
Cystatin C as a marker of glomerular filtration rate in voluntary kidney donors.

Exp Clin Transplant. 2012-2

引用本文的文献

[1]
Artificial intelligence-enhanced interpretation of kidney transplant biopsy: focus on rejection.

Curr Opin Organ Transplant. 2025-6-1

[2]
Decoding pathology: the role of computational pathology in research and diagnostics.

Pflugers Arch. 2025-4

[3]
: A web-based application for in-depth exploration of multi-omics data with brightfield histology.

bioRxiv. 2024-8-22

[4]
ComPRePS: An Automated Cloud-based Image Analysis tool to democratize AI in Digital Pathology.

Proc SPIE Int Soc Opt Eng. 2024-2

[5]
Deep learning-based classification of the capillary ultrastructure in human skeletal muscles.

Front Mol Biosci. 2024-5-1

[6]
Spatial transcriptomics in health and disease.

Nat Rev Nephrol. 2024-10

[7]
ComPRePS: An Automated Cloud-based Image Analysis tool to democratize AI in Digital Pathology.

bioRxiv. 2024-4-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索