J. Crayton Pruitt Family, Department of Biomedical Engineering, University of Florida Herbert Wertheim College of Engineering, Gainesville, Florida.
Departments of Pathology and Anatomical Sciences, University at Buffalo Jacobs School of Medicine and Biomedical Sciences - The State University of New York, Buffalo, New York.
Kidney360. 2023 Dec 1;4(12):1726-1737. doi: 10.34067/KID.0000000000000299. Epub 2023 Nov 14.
KEY POINTS: The authors leverage the unique benefits of panoptic segmentation to perform the largest ever quantitation of reference kidney morphometry. Kidney features vary with age and sex; and glomeruli size may intricately link to creatinine, defying prior notions. BACKGROUND: Reference histomorphometric data of healthy human kidneys are largely lacking because of laborious quantitation requirements. Correlating histomorphometric features with clinical parameters through machine learning approaches can provide valuable information about natural population variance. To this end, we leveraged deep learning (DL), computational image analysis, and feature analysis to associate the relationship of histomorphometry with patient age, sex, serum creatinine (SCr), and eGFR in a multinational set of reference kidney tissue sections. METHODS: A panoptic segmentation neural network was developed and used to segment viable and sclerotic glomeruli, cortical and medullary interstitia, tubules, and arteries/arterioles in the digitized images of 79 periodic acid–Schiff-stained human nephrectomy sections showing minimal pathologic changes. Simple morphometrics (, area, radius, density) were quantified from the segmented classes. Regression analysis aided in determining the association of histomorphometric parameters with age, sex, SCr, and eGFR. RESULTS: Our DL model achieved high segmentation performance for all test compartments. The size and density of glomeruli, tubules, and arteries/arterioles varied significantly among healthy humans, with potentially large differences between geographically diverse patients. Glomerular size was significantly correlated with SCr and eGFR. Slight, albeit significant, differences in renal vasculature were observed between sexes. Glomerulosclerosis percentage increased, and cortical density of arteries/arterioles decreased, as a function of increasing age. CONCLUSIONS: Using DL, we automated precise measurements of kidney histomorphometric features. In the reference kidney tissue, several histomorphometric features demonstrated significant correlation to patient demographics, SCr, and eGFR. DL tools can increase the efficiency and rigor of histomorphometric analysis.
要点:作者利用全景分割的独特优势,对参考肾脏形态计量学进行了迄今为止最大规模的定量分析。肾脏特征随年龄和性别而变化;肾小球大小可能与肌酐错综复杂地相关联,这有悖于先前的观念。
背景:由于定量要求繁琐,健康人类肾脏的参考组织形态计量学数据在很大程度上仍然缺乏。通过机器学习方法将组织形态计量学特征与临床参数相关联,可以提供有关自然人群变异性的有价值信息。为此,我们利用深度学习(DL)、计算图像分析和特征分析,在一组多国家的参考肾脏组织切片中,将组织形态计量学与患者年龄、性别、血清肌酐(SCr)和 eGFR 相关联。
方法:开发了全景分割神经网络,并将其用于分割数字化图像中的有活力和硬化的肾小球、皮质和髓质间质、肾小管以及动脉/小动脉。这些图像来自 79 例经周期性酸-Schiff 染色的人类肾切除术切片,显示出最小的病理变化。从分割的类中量化了简单的形态计量学(,面积、半径、密度)。回归分析有助于确定组织形态计量学参数与年龄、性别、SCr 和 eGFR 的关联。
结果:我们的 DL 模型在所有测试隔室中都实现了出色的分割性能。在健康人群中,肾小球、肾小管和动脉/小动脉的大小和密度存在显著差异,不同地理位置的患者之间可能存在较大差异。肾小球大小与 SCr 和 eGFR 显著相关。在性别之间观察到肾脏血管系统的轻微但显著的差异。肾小球硬化百分比随年龄增长而增加,动脉/小动脉皮质密度随年龄增长而降低。
结论:使用 DL,我们实现了对肾脏组织形态计量学特征的精确自动测量。在参考肾脏组织中,一些组织形态计量学特征与患者人口统计学、SCr 和 eGFR 显著相关。DL 工具可以提高组织形态计量学分析的效率和严格性。
IEEE Trans Nanobioscience. 2022-10
Clin Chem. 2020-12-1
Exp Clin Transplant. 2012-2
Curr Opin Organ Transplant. 2025-6-1
Pflugers Arch. 2025-4
Proc SPIE Int Soc Opt Eng. 2024-2
Front Mol Biosci. 2024-5-1
Nat Rev Nephrol. 2024-10