Allchemy, Highland, IN, USA.
Institute of Organic Chemistry, Polish Academy of Sciences, Warsaw, Poland.
Nature. 2024 Jan;625(7995):508-515. doi: 10.1038/s41586-023-06854-3. Epub 2023 Nov 15.
Recent years have seen revived interest in computer-assisted organic synthesis. The use of reaction- and neural-network algorithms that can plan multistep synthetic pathways have revolutionized this field, including examples leading to advanced natural products. Such methods typically operate on full, literature-derived 'substrate(s)-to-product' reaction rules and cannot be easily extended to the analysis of reaction mechanisms. Here we show that computers equipped with a comprehensive knowledge-base of mechanistic steps augmented by physical-organic chemistry rules, as well as quantum mechanical and kinetic calculations, can use a reaction-network approach to analyse the mechanisms of some of the most complex organic transformations: namely, cationic rearrangements. Such rearrangements are a cornerstone of organic chemistry textbooks and entail notable changes in the molecule's carbon skeleton. The algorithm we describe and deploy at https://HopCat.allchemy.net/ generates, within minutes, networks of possible mechanistic steps, traces plausible step sequences and calculates expected product distributions. We validate this algorithm by three sets of experiments whose analysis would probably prove challenging even to highly trained chemists: (1) predicting the outcomes of tail-to-head terpene (THT) cyclizations in which substantially different outcomes are encoded in modular precursors differing in minute structural details; (2) comparing the outcome of THT cyclizations in solution or in a supramolecular capsule; and (3) analysing complex reaction mixtures. Our results support a vision in which computers no longer just manipulate known reaction types but will help rationalize and discover new, mechanistically complex transformations.
近年来,计算机辅助有机合成重新引起了人们的兴趣。使用可以规划多步合成途径的反应和神经网络算法彻底改变了这一领域,包括一些导致先进天然产物的例子。这些方法通常基于完整的、源自文献的“底物-产物”反应规则,并且不容易扩展到反应机制的分析。在这里,我们展示了配备了由物理有机化学规则、量子力学和动力学计算增强的综合机制步骤知识库的计算机可以使用反应网络方法来分析一些最复杂的有机转化的机制:即阳离子重排。这些重排是有机化学教科书的基石,涉及分子碳骨架的显著变化。我们在 https://HopCat.allchemy.net/ 描述和部署的算法可以在几分钟内生成可能的机制步骤网络,追踪合理的步骤序列并计算预期的产物分布。我们通过三组实验验证了该算法,即使对于训练有素的化学家来说,这些实验的分析也可能极具挑战性:(1)预测在细微结构差异的模块化前体中编码了明显不同结果的头对头萜类(THT)环化的结果;(2)比较在溶液或超分子胶囊中进行 THT 环化的结果;(3)分析复杂的反应混合物。我们的结果支持这样一种观点,即计算机不再仅仅操纵已知的反应类型,而是将帮助合理化和发现新的、机制复杂的转化。