Liu Zhan, Zheng Junbo, Tu Chaofeng, Pan Yingli
Hubei Key Laboratory of Applied Mathematics, School of Mathematics and Statistics, Hubei University, Wuhan, People's Republic of China.
J Appl Stat. 2022 Aug 5;50(16):3251-3271. doi: 10.1080/02664763.2022.2107187. eCollection 2023.
Propensity score approach is a popular technique for estimating the population based on volunteer web survey samples. Various models have been used to estimate propensity scores and produce different population estimates. To obtain more accurate population estimators, we propose a model-averaging estimation approach based on propensity score estimates from a parametric logistic regression model and a nonparametric generalized boosted model. Consistency and asymptotic normality of the proposed estimators are established. A computation algorithm is also developed to implement the proposed method. Simulation studies are conducted to compare the performance of the proposed method with the other methods. A survey data from the Netizen Social Awareness Survey (NSAS) is used to illustrate the proposed methodology.
倾向得分法是一种基于志愿者网络调查样本估计总体的常用技术。已使用各种模型来估计倾向得分并得出不同的总体估计值。为了获得更准确的总体估计量,我们提出了一种基于参数逻辑回归模型和非参数广义提升模型的倾向得分估计的模型平均估计方法。建立了所提出估计量的一致性和渐近正态性。还开发了一种计算算法来实现所提出的方法。进行了模拟研究以比较所提出方法与其他方法的性能。使用来自网民社会意识调查(NSAS)的调查数据来说明所提出的方法。