Suppr超能文献

CG编译器:通过抗噪声混合变量优化实现自动粗粒度分子参数化

CGCompiler: Automated Coarse-Grained Molecule Parametrization via Noise-Resistant Mixed-Variable Optimization.

作者信息

Stroh Kai Steffen, Souza Paulo C T, Monticelli Luca, Risselada Herre Jelger

机构信息

Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany.

Institute for Theoretical Physics, Georg-August University Göttingen, 37077 Göttingen, Germany.

出版信息

J Chem Theory Comput. 2023 Nov 28;19(22):8384-8400. doi: 10.1021/acs.jctc.3c00637. Epub 2023 Nov 16.

Abstract

Coarse-grained force fields (CG FFs) such as the Martini model entail a predefined, fixed set of Lennard-Jones parameters (building blocks) to model virtually all possible nonbonded interactions between chemically relevant molecules. Owing to its universality and transferability, the building-block coarse-grained approach has gained tremendous popularity over the past decade. The parametrization of molecules can be highly complex and often involves the selection and fine-tuning of a large number of parameters (e.g., bead types and bond lengths) to optimally match multiple relevant targets simultaneously. The parametrization of a molecule within the building-block CG approach is a mixed-variable optimization problem: the nonbonded interactions are discrete variables, whereas the bonded interactions are continuous variables. Here, we pioneer the utility of mixed-variable particle swarm optimization in automatically parametrizing molecules within the Martini 3 coarse-grained force field by matching both structural (e.g., RDFs) as well as thermodynamic data (phase-transition temperatures). For the sake of demonstration, we parametrize the linker of the lipid sphingomyelin. The important advantage of our approach is that both bonded and nonbonded interactions are simultaneously optimized while conserving the search efficiency of vector guided particle swarm optimization (PSO) methods over other metaheuristic search methods such as genetic algorithms. In addition, we explore noise-mitigation strategies in matching the phase-transition temperatures of lipid membranes, where nucleation and concomitant hysteresis introduce a dominant noise term within the objective function. We propose that noise-resistant mixed-variable PSO methods can both improve and automate parametrization of molecules within building-block CG FFs, such as Martini.

摘要

粗粒度力场(CG FFs),如马提尼模型,需要一组预定义的、固定的 Lennard-Jones 参数(构建模块)来模拟化学相关分子之间几乎所有可能的非键相互作用。由于其通用性和可转移性,在过去十年中,基于构建模块的粗粒度方法受到了极大的欢迎。分子的参数化可能非常复杂,通常需要选择和微调大量参数(例如,珠子类型和键长),以便同时最佳地匹配多个相关目标。在基于构建模块的 CG 方法中,分子的参数化是一个混合变量优化问题:非键相互作用是离散变量,而键相互作用是连续变量。在这里,我们率先利用混合变量粒子群优化方法,通过匹配结构数据(例如径向分布函数)和热力学数据(相变温度),自动对马提尼 3 粗粒度力场中的分子进行参数化。为了进行演示,我们对脂质鞘磷脂的连接子进行了参数化。我们方法的重要优点是,在保持向量引导粒子群优化(PSO)方法相对于遗传算法等其他元启发式搜索方法的搜索效率的同时,对键相互作用和非键相互作用进行了同时优化。此外,我们探索了在匹配脂质膜相变温度时的噪声缓解策略,其中成核和伴随的滞后现象在目标函数中引入了一个主要的噪声项。我们提出,抗噪声混合变量 PSO 方法可以改进并自动化基于构建模块的 CG FFs(如马提尼力场)中分子的参数化过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e3c/10688431/23356b0c5ec4/ct3c00637_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验