Suppr超能文献

用于离子液体中双苯丙氨酸自组装的联合原子/粗粒度混合模型中耦合项的机器学习引导自适应参数化

Machine Learning-Guided Adaptive Parametrization for Coupling Terms in a Mixed United-Atom/Coarse-Grained Model for Diphenylalanine Self-Assembly in Aqueous Ionic Liquids.

作者信息

Ge Yang, Wang Xueping, Zhu Qiang, Yang Yuqin, Dong Hao, Ma Jing

机构信息

Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.

Kuang Yaming Honors School, Nanjing University, Nanjing 210023, China.

出版信息

J Chem Theory Comput. 2023 Oct 10;19(19):6718-6732. doi: 10.1021/acs.jctc.3c00809. Epub 2023 Sep 19.

Abstract

Precise regulation of the peptide self-assembly into ordered nanostructures with intriguing properties has attracted intense attention. However, predicting peptide assembly at atomic resolution is a challenge due to both the structural flexibility of peptides and the associated huge computational costs. A machine learning-guided adaptive parametrization method was proposed for developing a mixed atomic and coarse-grained (CG) model through a multiobjective optimization strategy. Our model incorporates the united-atom (UA) model for diphenylalanine (P) and the polarizable electrostatic-variable coarse-grained (VaCG) model for aqueous ionic liquid [BMIM][BF] solution. In this mixed model, the coupling van der Waals (vdW) interaction is addressed by introducing virtual sites (VS) in the UA model to interact with solvent CG beads. The coupling parameters, including the electrostatic parameter and vdW parameters, are automatically optimized through ML-guided adaptive parametrization. The performance of this model was tested by some microstructural properties, e.g., the average number of P-P intermolecular hydrogen bonds (HBs) and radius distribution functions (RDFs) between P and different fragments of IL, in comparison with all-atom (AA) simulations. The computational cost is significantly reduced using such a parametrization scheme, which could search tens of thousands of force-field parameter sets, while needing only a small fraction of them to be assessed with molecular dynamics (MD) simulations. We used such a mixed resolution model to investigate the self-assembly in IL-water mixtures with variants of IL concentration (). The long-range-ordered fibril structure is formed in a pure water system ( = 0). With an increase of IL concentrations, the formation of an ordered self-assembly nanostructure is prohibited, instead forming branched fibril at = 2 mol % or amorphous aggregates when > 10 mol %, resulting from the interplay between π-stacking and HB interactions between P and IL. The qualitative agreement between the simulated structures and the observed morphologies in experiments indicates the applicability of ML-guided parametrization strategy in the study of complex systems, such as polymers, lipid bilayers, and polysaccharides.

摘要

肽自组装成具有有趣性质的有序纳米结构的精确调控已引起广泛关注。然而,由于肽的结构灵活性以及相关的巨大计算成本,以原子分辨率预测肽组装是一项挑战。提出了一种机器学习引导的自适应参数化方法,通过多目标优化策略开发混合原子和粗粒度(CG)模型。我们的模型包含用于二苯丙氨酸(P)的联合原子(UA)模型和用于水性离子液体[BMIM][BF]溶液的可极化静电可变粗粒度(VaCG)模型。在这个混合模型中,通过在UA模型中引入虚拟位点(VS)与溶剂CG珠子相互作用来处理耦合范德华(vdW)相互作用。包括静电参数和vdW参数在内的耦合参数通过ML引导的自适应参数化自动优化。与全原子(AA)模拟相比,通过一些微观结构性质,例如P-P分子间氢键(HBs)的平均数量以及P与IL不同片段之间的径向分布函数(RDFs),测试了该模型的性能。使用这种参数化方案,计算成本显著降低,该方案可以搜索数万个力场参数集,而只需要用分子动力学(MD)模拟评估其中一小部分。我们使用这种混合分辨率模型研究了不同IL浓度()的IL-水混合物中的自组装。在纯水系统( = 0)中形成长程有序的纤维结构。随着IL浓度的增加,有序自组装纳米结构的形成受到抑制,在 = 2 mol%时形成分支纤维,而当 > 10 mol%时形成无定形聚集体,这是由于P与IL之间的π-堆积和HB相互作用之间的相互作用所致。模拟结构与实验中观察到的形态之间的定性一致性表明,ML引导的参数化策略在研究复杂系统(如聚合物、脂质双层和多糖)方面具有适用性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验