Methorst Jeroen, van Hilten Niek, Hoti Art, Stroh Kai Steffen, Risselada Herre Jelger
Leiden Institute of Chemistry, Leiden University, 2333 CC Leiden, The Netherlands.
Department of Physics, Technische Universität Dortmund, 44227 Dortmund, Germany.
J Chem Theory Comput. 2024 Mar 12;20(5):1763-1776. doi: 10.1021/acs.jctc.3c00874. Epub 2024 Feb 27.
Biomolecular research traditionally revolves around comprehending the mechanisms through which peptides or proteins facilitate specific functions, often driven by their relevance to clinical ailments. This conventional approach assumes that unraveling mechanisms is a prerequisite for wielding control over functionality, which stands as the ultimate research goal. However, an alternative perspective emerges from physics-based inverse design, shifting the focus from mechanisms to the direct acquisition of functional control strategies. By embracing this methodology, we can uncover solutions that might not have direct parallels in natural systems, yet yield crucial insights into the isolated molecular elements dictating functionality. This provides a distinctive comprehension of the underlying mechanisms.In this context, we elucidate how physics-based inverse design, facilitated by evolutionary algorithms and coarse-grained molecular simulations, charts a promising course for innovating the reverse engineering of biopolymers interacting with intricate fluid phases such as lipid membranes and liquid protein phases. We introduce evolutionary molecular dynamics (Evo-MD) simulations, an approach that merges evolutionary algorithms with the Martini coarse-grained force field. This method directs the evolutionary process from random amino acid sequences toward peptides interacting with complex fluid phases such as biological lipid membranes, offering significant promises in the development of peptide-based sensors and drugs. This approach can be tailored to recognize or selectively target specific attributes such as membrane curvature, lipid composition, membrane phase (e.g., lipid rafts), and protein fluid phases. Although the resulting optimal solutions may not perfectly align with biological norms, physics-based inverse design excels at isolating relevant physicochemical principles and thermodynamic driving forces governing optimal biopolymer interaction within complex fluidic environments. In addition, we expound upon how physics-based evolution using the Evo-MD approach can be harnessed to extract the evolutionary optimization fingerprints of protein-lipid interactions from native proteins. Finally, we outline how such an approach is uniquely able to generate strategic training data for predictive neural network models that cover the whole relevant physicochemical domain. Exploring challenges, we address key considerations such as choosing a fitting fitness function to delineate the desired functionality. Additionally, we scrutinize assumptions tied to system setup, the targeted protein structure, and limitations posed by the utilized (coarse-grained) force fields and explore potential strategies for guiding evolution with limited experimental data. This discourse encapsulates the potential and remaining obstacles of physics-based inverse design, paving the way for an exciting frontier in biomolecular research.
传统上,生物分子研究围绕理解肽或蛋白质发挥特定功能的机制展开,这通常由它们与临床疾病的相关性所驱动。这种传统方法假定,揭示机制是掌控功能的先决条件,而掌控功能是最终的研究目标。然而,基于物理学的逆向设计提出了另一种观点,将重点从机制转移到直接获取功能控制策略。通过采用这种方法,我们可以发现一些在自然系统中可能没有直接对应物的解决方案,但能对决定功能的孤立分子元素产生关键见解。这提供了对潜在机制的独特理解。在这种背景下,我们阐明了基于物理学的逆向设计,在进化算法和粗粒度分子模拟的辅助下,如何为创新与复杂流体相(如脂质膜和液态蛋白质相)相互作用的生物聚合物的逆向工程开辟一条充满希望的道路。我们引入了进化分子动力学(Evo-MD)模拟,这是一种将进化算法与马蒂尼粗粒度力场相结合的方法。该方法将进化过程从随机氨基酸序列导向与复杂流体相(如生物脂质膜)相互作用的肽,在基于肽的传感器和药物开发方面具有重大前景。这种方法可以进行定制,以识别或选择性靶向特定属性,如膜曲率、脂质组成、膜相(如脂筏)和蛋白质流体相。尽管所得的最优解可能不完全符合生物学规范,但基于物理学的逆向设计擅长分离复杂流体环境中控制最佳生物聚合物相互作用的相关物理化学原理和热力学驱动力。此外,我们阐述了如何利用基于Evo-MD方法的基于物理学的进化来从天然蛋白质中提取蛋白质-脂质相互作用的进化优化指纹。最后,我们概述了这种方法如何独特地为涵盖整个相关物理化学领域的预测神经网络模型生成战略训练数据。在探索挑战时,我们讨论了关键考虑因素,如选择合适的适应度函数来描述所需功能。此外,我们审视了与系统设置、目标蛋白质结构相关的假设,以及所用(粗粒度)力场带来的局限性,并探索了利用有限实验数据指导进化的潜在策略。这篇论述概括了基于物理学的逆向设计的潜力和剩余障碍,为生物分子研究的一个令人兴奋的前沿领域铺平了道路。