文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于 TATPat 的新生儿癫痫发作检测可解释 EEG 模型。

TATPat based explainable EEG model for neonatal seizure detection.

机构信息

Department of Digital Forensics Engineering, College of Technology, Firat University, 23119, Elazig, Turkey.

Department of Neurology, School of Medicine, Firat University, Elazig, Turkey.

出版信息

Sci Rep. 2024 Nov 4;14(1):26688. doi: 10.1038/s41598-024-77609-x.


DOI:10.1038/s41598-024-77609-x
PMID:39496779
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11535284/
Abstract

The most cost-effective data collection method is electroencephalography (EEG) to obtain meaningful information about the brain. Therefore, EEG signal processing is very important for neuroscience and machine learning (ML). The primary objective of this research is to detect neonatal seizures and explain these seizures using the new version of Directed Lobish. This research uses a publicly available neonatal EEG signal dataset to get comparative results. In order to classify these EEG signals, an explainable feature engineering (EFE) model has been proposed. In this EFE model, there are four essential phases and these phases: (i) automaton and transformer-based feature extraction, (ii) feature selection deploying cumulative weight-based neighborhood component analysis (CWNCA), (iii) the Directed Lobish (DLob) and Causal Connectome Theory (CCT)-based explainable result generation and (iv) classification deploying t algorithm-based support vector machine (tSVM). In the first phase, we have used a channel transformer to get channel numbers and these values have been divided into three levels and these levels are named (1) high, (2) medium and (3) low. By utilizing these levels, we have created an automaton and this automaton has three nodes (each node defines each level). In the feature extraction phase, transition tables of these nodes has been extracted. Therefore, the proposed feature extraction function is termed Triple Nodes Automaton-based Transition table Pattern (TATPat). The used EEG signal dataset contains 19 channels and there are 9 (= 3) connection in the defined automaton. Thus, the presented TATPat extracts 3249 (= 19 × 19 × 9) features from each EEG segment. To choose the most informative features of these 3249 features, a new feature selector which is CWNCA has been applied. By cooperating findings of this feature selector and the presented DLob, the explainable results have been obtained. The last phase is the classification phase and to get high classification performance from this phase, an ensemble classifier (tSVM) has been presented and the classification results have been obtained using two validation techniques which are 10-fold cross-validation (CV) and leave-one subject-out (LOSO) CV. The proposed EFE model generates a DLob string and by using this string, the explainable results have been obtained. Moreover, the presented EFE model attained 99.15% and 76.37% classification accuracy deploying 10-fold and LOSO CVs respectively. According to the classification performances, the recommended TATPat-based EFE is a good model at EEG signal classification. Also, the presented TATPat-based EFE model is a good model for explainable artificial intelligence (XAI) since TTPat-based EFE is cooperating by the DLob.

摘要

最具成本效益的数据收集方法是脑电图 (EEG),可获取有关大脑的有意义信息。因此,EEG 信号处理对于神经科学和机器学习 (ML) 非常重要。本研究的主要目的是使用新版本的 Directed Lobish 检测新生儿癫痫发作并解释这些癫痫发作。本研究使用公开的新生儿 EEG 信号数据集获得了比较结果。为了对这些 EEG 信号进行分类,提出了一种可解释特征工程 (EFE) 模型。在这个 EFE 模型中,有四个基本阶段,这些阶段是:(i)基于自动机和转换器的特征提取,(ii)使用累积权重邻域成分分析(CWNCA)进行特征选择,(iii)基于 Directed Lobish(DLob)和因果连通理论(CCT)的可解释结果生成,以及(iv)基于 t 算法的支持向量机(tSVM)进行分类。在第一阶段,我们使用通道转换器获取通道数量,并将这些值分为三个级别,这些级别分别命名为(1)高、(2)中、(3)低。通过利用这些级别,我们创建了一个自动机,这个自动机有三个节点(每个节点定义每个级别)。在特征提取阶段,提取了这些节点的转移表。因此,所提出的特征提取函数被称为 Triple Nodes Automaton-based Transition table Pattern(TATPat)。所使用的 EEG 信号数据集包含 19 个通道,在定义的自动机中有 9 个(=3)连接。因此,所提出的 TATPat 从每个 EEG 段中提取 3249 个(=19×19×9)特征。为了从这 3249 个特征中选择最具信息量的特征,应用了一种新的特征选择器,即累积权重邻域成分分析(CWNCA)。通过结合该特征选择器和所提出的 Directed Lobish 的结果,得到了可解释的结果。最后一个阶段是分类阶段,为了从这个阶段获得更高的分类性能,提出了一个集成分类器(tSVM),并使用两种验证技术(10 折交叉验证(CV)和留一受试者外(LOSO)CV)获得了分类结果。所提出的 EFE 模型生成一个 Directed Lobish 字符串,并使用该字符串获得可解释的结果。此外,所提出的基于 EFE 的模型在使用 10 折和 LOSO CV 时分别达到了 99.15%和 76.37%的分类准确率。根据分类性能,推荐的基于 TATPat 的 EFE 是 EEG 信号分类的一个很好的模型。此外,由于 TATPat 基于 EFE 与 Directed Lobish 合作,因此,所提出的基于 TATPat 的 EFE 模型也是一个很好的可解释人工智能(XAI)模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/3185dcb8df18/41598_2024_77609_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/8c05177613db/41598_2024_77609_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/1ffa9305a1a2/41598_2024_77609_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/a2abdbe665db/41598_2024_77609_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/a25d996a4f54/41598_2024_77609_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/98dd7ea9bbcc/41598_2024_77609_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/3185dcb8df18/41598_2024_77609_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/8c05177613db/41598_2024_77609_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/1ffa9305a1a2/41598_2024_77609_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/a2abdbe665db/41598_2024_77609_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/a25d996a4f54/41598_2024_77609_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/98dd7ea9bbcc/41598_2024_77609_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/131d/11535284/3185dcb8df18/41598_2024_77609_Fig6_HTML.jpg

相似文献

[1]
TATPat based explainable EEG model for neonatal seizure detection.

Sci Rep. 2024-11-4

[2]
Lobish: Symbolic Language for Interpreting Electroencephalogram Signals in Language Detection Using Channel-Based Transformation and Pattern.

Diagnostics (Basel). 2024-9-8

[3]
Epileptic seizure detection in EEG signal using machine learning techniques.

Australas Phys Eng Sci Med. 2018-3

[4]
Epileptic seizure detection in EEG signal with GModPCA and support vector machine.

Biomed Mater Eng. 2017

[5]
A Novel Approach for Multichannel Epileptic Seizure Classification Based on Internet of Things Framework Using Critical Spectral Verge Feature Derived from Flower Pollination Algorithm.

Sensors (Basel). 2022-11-29

[6]
PrimePatNet87: Prime pattern and tunable q-factor wavelet transform techniques for automated accurate EEG emotion recognition.

Comput Biol Med. 2021-11

[7]
Incorporating feature selection methods into a machine learning-based neonatal seizure diagnosis.

Med Hypotheses. 2020-2

[8]
Epileptic Seizure Classification of EEGs Using Time-Frequency Analysis Based Multiscale Radial Basis Functions.

IEEE J Biomed Health Inform. 2017-3-10

[9]
Selecting EEG channels and features using multi-objective optimization for accurate MCI detection: validation using leave-one-subject-out strategy.

Sci Rep. 2024-5-30

[10]
An automated detection of epileptic seizures EEG using CNN classifier based on feature fusion with high accuracy.

BMC Med Inform Decis Mak. 2023-5-22

引用本文的文献

[1]
Novel accurate classification system developed using order transition pattern feature engineering technique with physiological signals.

Sci Rep. 2025-5-1

[2]
Transformers in EEG Analysis: A Review of Architectures and Applications in Motor Imagery, Seizure, and Emotion Classification.

Sensors (Basel). 2025-2-20

[3]
CubicPat: Investigations on the Mental Performance and Stress Detection Using EEG Signals.

Diagnostics (Basel). 2025-2-4

[4]
ChMinMaxPat: Investigations on Violence and Stress Detection Using EEG Signals.

Diagnostics (Basel). 2024-11-26

本文引用的文献

[1]
Lobish: Symbolic Language for Interpreting Electroencephalogram Signals in Language Detection Using Channel-Based Transformation and Pattern.

Diagnostics (Basel). 2024-9-8

[2]
Combining EEG Features and Convolutional Autoencoder for Neonatal Seizure Detection.

Int J Neural Syst. 2024-8

[3]
Unified Convolutional Sparse Transformer for Disease Diagnosis, Monitoring, Drug Development, and Therapeutic Effect Prediction from EEG Raw Data.

Biology (Basel). 2024-3-22

[4]
Deep Source Semi-Supervised Transfer Learning (DS3TL) for Cross-Subject EEG Classification.

IEEE Trans Biomed Eng. 2024-4

[5]
Detection and Severity Identification of Neonatal Seizure Using Deep Convolutional Neural Networks from Multichannel EEG Signal.

Pediatric Health Med Ther. 2023-11-1

[6]
A Modified Aquila-Based Optimized XGBoost Framework for Detecting Probable Seizure Status in Neonates.

Sensors (Basel). 2023-8-9

[7]
A novel approach to seizures in neonates.

Eur J Paediatr Neurol. 2023-9

[8]
Incidence of Neonatal Seizures in China Based on Electroencephalogram Monitoring in Neonatal Neurocritical Care Units.

JAMA Netw Open. 2023-7-3

[9]
A Class-Imbalance Aware and Explainable Spatio-Temporal Graph Attention Network for Neonatal Seizure Detection.

Int J Neural Syst. 2023-9

[10]
EEG seizure detection: concepts, techniques, challenges, and future trends.

Multimed Tools Appl. 2023-4-4

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索