Suppr超能文献

利用自监督学习揭示临床脑电图信号的结构。

Uncovering the structure of clinical EEG signals with self-supervised learning.

机构信息

Université Paris-Saclay, Inria, CEA, Palaiseau, France.

InteraXon Inc., Toronto, Canada.

出版信息

J Neural Eng. 2021 Mar 31;18(4). doi: 10.1088/1741-2552/abca18.

Abstract

Supervised learning paradigms are often limited by the amount of labeled data that is available. This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG), where labeling can be costly in terms of specialized expertise and human processing time. Consequently, deep learning architectures designed to learn on EEG data have yielded relatively shallow models and performances at best similar to those of traditional feature-based approaches. However, in most situations, unlabeled data is available in abundance. By extracting information from this unlabeled data, it might be possible to reach competitive performance with deep neural networks despite limited access to labels.We investigated self-supervised learning (SSL), a promising technique for discovering structure in unlabeled data, to learn representations of EEG signals. Specifically, we explored two tasks based on temporal context prediction as well as contrastive predictive coding on two clinically-relevant problems: EEG-based sleep staging and pathology detection. We conducted experiments on two large public datasets with thousands of recordings and performed baseline comparisons with purely supervised and hand-engineered approaches.Linear classifiers trained on SSL-learned features consistently outperformed purely supervised deep neural networks in low-labeled data regimes while reaching competitive performance when all labels were available. Additionally, the embeddings learned with each method revealed clear latent structures related to physiological and clinical phenomena, such as age effects.We demonstrate the benefit of SSL approaches on EEG data. Our results suggest that self-supervision may pave the way to a wider use of deep learning models on EEG data.

摘要

监督学习范式通常受到可用标记数据量的限制。这种现象在临床相关数据中尤为突出,例如脑电图 (EEG),标记在专业知识和人力处理时间方面可能成本高昂。因此,旨在学习 EEG 数据的深度学习架构产生的模型相对较浅,性能充其量与传统基于特征的方法相似。然而,在大多数情况下,大量未标记的数据是可用的。通过从这些未标记的数据中提取信息,即使对标签的访问有限,也有可能使用深度神经网络达到有竞争力的性能。我们研究了自监督学习 (SSL),这是一种从无标签数据中发现结构的有前途的技术,用于学习 EEG 信号的表示。具体来说,我们探索了基于时间上下文预测的两项任务以及基于对比预测编码的两项临床相关问题:基于 EEG 的睡眠分期和病理检测。我们在两个拥有数千个记录的大型公共数据集上进行了实验,并与纯监督和手工制作的方法进行了基准比较。在低标记数据情况下,基于 SSL 学习的特征训练的线性分类器始终优于纯监督的深度神经网络,而在所有标签都可用时则达到了有竞争力的性能。此外,每种方法学习的嵌入揭示了与生理和临床现象相关的明显潜在结构,例如年龄效应。我们展示了 SSL 方法在 EEG 数据上的优势。我们的结果表明,自我监督可能为 EEG 数据上更广泛地使用深度学习模型铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验