School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
Department of Organic Chemistry, Bioorganic Chemistry and Biotechnology, Silesian University of Technology, B. Krzywoustego 4, 44-100, Gliwice, Poland.
Chemosphere. 2024 Jan;347:140694. doi: 10.1016/j.chemosphere.2023.140694. Epub 2023 Nov 15.
Herein, we have reported a photocatalytic BiOI, protonated g-CN heterojunction with directional charge transfer channels provided by tea waste biochar to achieve effective e/h pair isolation for the improved degradation of Methylene blue (MB) and Doxycycline hydrochloride (DCHCl). An S-scheme heterojunction was fabricated via the novel method that combined hydrothermal and ultrasonic dispersion, followed by an electrostatic self-assembly route. The as-fabricated BiOI/protonated g-CN/Tea waste biochar heterojunction formed a strong contact at the interface, as supported by the electron microscopic results. As per the adsorption and photocatalytic degradation kinetics study, BiOI/Tea waste biochar/protonated g-CN (40 wt%) heterojunction showed a higher adsorption rate of 41.56% and 32% for MB and DCHCl within 30 min in the dark. Also, 92.02% MB and 90.21% DCHCl degradation rates in 60 and 90 min, respectively, are approximately 43 and 32 times higher than bare BiOI and protonated g-CN photocatalysts. The highest adsorption and degradation rate was achieved owing to the addition of Tea waste biochar and protonated g-CN in a controlled ratio, and the sufficient interfacial contact between BiOI and protonated g-CN is for the improved isolation rate of e/h pairs as evidenced by zeta potential values photoluminescence spectra as well as from scanning and transmission electron microscopy. Moreover, BiOI/Tea waste biochar/protonated g-CN (40 wt%) possessed high stability and recyclability after four consecutive cycles without much altering the degradation ability. Therefore, we believe that the as-fabricated BiOI/Tea waste biochar/protonated g-CN (40 wt%) provides new insight into the highly efficient S-scheme mechanisms significant for accelerating multicomponent photocatalytic redox reactions; while forming an effective visible light responsive candidate for treating wastewater.
在此,我们报道了一种光催化 BiOI 与质子化 g-CN 的异质结,其中提供了由茶废料生物炭构成的定向电荷转移通道,以实现有效的 e/h 对隔离,从而有效降解亚甲基蓝(MB)和盐酸多西环素(DCHCl)。通过将水热法和超声分散法相结合,然后采用静电自组装的方法,制备了 S 型异质结。电子显微镜结果表明,所制备的 BiOI/质子化 g-CN/茶废料生物炭异质结在界面处形成了牢固的接触。根据吸附和光催化降解动力学研究,BiOI/茶废料生物炭/质子化 g-CN(40wt%)异质结在黑暗中 30 分钟内对 MB 和 DCHCl 的吸附率分别为 41.56%和 32%。此外,60 和 90 分钟时,MB 和 DCHCl 的降解率分别高达 92.02%和 90.21%,分别约为 bare BiOI 和质子化 g-CN 光催化剂的 43 倍和 32 倍。之所以能够实现最高的吸附和降解速率,是由于在受控比例下添加了茶废料生物炭和质子化 g-CN,并且 BiOI 和质子化 g-CN 之间具有充分的界面接触,从而提高了 e/h 对的分离速率,这一点可以从 Zeta 电位值、光致发光光谱以及扫描和透射电子显微镜得到证明。此外,BiOI/茶废料生物炭/质子化 g-CN(40wt%)在经过四个连续循环后仍具有很高的稳定性和可回收性,而不会大大改变其降解能力。因此,我们相信,所制备的 BiOI/茶废料生物炭/质子化 g-CN(40wt%)为高效 S 型机制提供了新的见解,这对于加速多组分光催化氧化还原反应非常重要;同时为处理废水提供了一种有效的可见光响应候选物。