Abouri Mariyem, Benzaouak Abdellah, Elouardi Mohamed, El Hamdaoui Lahcen, Zaaboul Fatima, Azzaoui Khalil, Hammouti Belkheir, Sabbahi Rachid, Jodeh Shehdeh, El Belghiti Mohammed Alaoui, El Hamidi Adnane
Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterial, Water and Environment Laboratory, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP1014, Agdal, Rabat, Morocco.
Laboratory of Materials, Nanotechnologies and Environment, Center of Sciences of Materials, Faculty of Sciences, Mohammed V University in Rabat, Avenue Ibn Battouta, BP:1014, 10000, Rabat, Morocco.
Sci Rep. 2025 Jan 28;15(1):3595. doi: 10.1038/s41598-024-83610-1.
In this study, novel polyaniline-coated perovskite nanocomposites (PANI@CoTiO and PANI@NiTiO) were synthesized using an in situ oxidative polymerization method and evaluated for the photocatalytic degradation of Rhodamine B (RhB) a persistent organic pollutant. The nanocomposites displayed significantly enhanced photocatalytic efficiency compared to pure perovskites. The 1%wt PANI@NiTiO achieved an impressive 94% degradation of RhB under visible light after 180 min, while 1wt.% PANI@CoTiO3 reached 87% degradation under UV light in the same duration. X-ray diffraction (XRD) confirmed that the crystalline structures of CoTiO and NiTiO remained intact post-polymerization. At the same time, Fourier transform infrared spectroscopy (FTIR) verified the successful deposition of PANI through characteristic functional group vibrations. Diffuse reflectance spectroscopy (DRS) revealed reduced band gaps of 2.63 eV for 1wt.% PANI@NiTiO and 2.46 eV for 1wt.% PANI@CoTiO, enhancing light absorption across UV and visible ranges. Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS) analysis demonstrated the uniform distribution of PANI, ensuring consistent surface activity and efficient charge transfer. The photocatalytic test confirmed a pseudo-first-order degradation mechanism. The study elucidates the degradation mechanism through intermediate identification via HPLC-MS analysis, highlighting N-de-ethylation, aromatic ring cleavage and eventual mineralization into CO and HO as critical pathways. Furthermore, the 1wt.%PANI@NiTiO nanocomposite demonstrated excellent stability and recyclability, maintaining its degradation efficiency over four consecutive cycles with minimal change. These findings highlight the potential of PANI@XTiO nanocomposites for sustainable and efficient wastewater treatment, addressing diverse environmental challenges by tailoring photocatalysts to specific light sources.
在本研究中,采用原位氧化聚合法合成了新型聚苯胺包覆的钙钛矿纳米复合材料(PANI@CoTiO和PANI@NiTiO),并对其光催化降解持久性有机污染物罗丹明B(RhB)的性能进行了评估。与纯钙钛矿相比,这些纳米复合材料的光催化效率显著提高。1%wt的PANI@NiTiO在可见光下180分钟后对RhB的降解率达到了令人印象深刻的94%,而1wt.%的PANI@CoTiO3在相同时间内紫外光下的降解率达到了87%。X射线衍射(XRD)证实,CoTiO和NiTiO的晶体结构在聚合后保持完整。同时,傅里叶变换红外光谱(FTIR)通过特征官能团振动验证了PANI的成功沉积。漫反射光谱(DRS)显示,1wt.%的PANI@NiTiO的带隙减小到2.63 eV,1wt.%的PANI@CoTiO的带隙减小到2.46 eV,增强了在紫外和可见光范围内的光吸收。扫描电子显微镜(SEM)和能量色散X射线光谱(EDS)分析表明PANI分布均匀,确保了一致的表面活性和有效的电荷转移。光催化测试证实了假一级降解机制。该研究通过HPLC-MS分析鉴定中间体阐明了降解机制,突出了N-去乙基化、芳环裂解以及最终矿化成CO₂和H₂O作为关键途径。此外,1wt.%的PANI@NiTiO纳米复合材料表现出优异的稳定性和可回收性,在连续四个循环中保持其降解效率,变化极小。这些发现突出了PANI@XTiO纳米复合材料在可持续和高效废水处理方面的潜力,通过针对特定光源定制光催化剂来应对各种环境挑战。