Suppr超能文献

揭示微管中 GTP 水解的催化机制。

Unveiling the catalytic mechanism of GTP hydrolysis in microtubules.

机构信息

Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, IL 60637.

出版信息

Proc Natl Acad Sci U S A. 2023 Jul 4;120(27):e2305899120. doi: 10.1073/pnas.2305899120. Epub 2023 Jun 26.

Abstract

Microtubules (MTs) are large cytoskeletal polymers, composed of αβ-tubulin heterodimers, capable of stochastically converting from polymerizing to depolymerizing states and vice versa. Depolymerization is coupled with hydrolysis of guanosine triphosphate (GTP) within β-tubulin. Hydrolysis is favored in the MT lattice compared to a free heterodimer with an experimentally observed rate increase of 500- to 700-fold, corresponding to an energetic barrier lowering of 3.8 to 4.0 kcal/mol. Mutagenesis studies have implicated α-tubulin residues, α:E254 and α:D251, as catalytic residues completing the β-tubulin active site of the lower heterodimer in the MT lattice. The mechanism for GTP hydrolysis in the free heterodimer, however, is not understood. Additionally, there has been debate concerning whether the GTP-state lattice is expanded or compacted relative to the GDP state and whether a "compacted" GDP-state lattice is required for hydrolysis. In this work, extensive quantum mechanics/molecular mechanics simulations with transition-tempered metadynamics free-energy sampling of compacted and expanded interdimer complexes, as well as a free heterodimer, have been carried out to provide clear insight into the GTP hydrolysis mechanism. α:E254 was found to be the catalytic residue in a compacted lattice, while in the expanded lattice, disruption of a key salt bridge interaction renders α:E254 less effective. The simulations reveal a barrier decrease of 3.8 ± 0.5 kcal/mol for the compacted lattice compared to a free heterodimer, in good agreement with experimental kinetic measurements. Additionally, the expanded lattice barrier was found to be 6.3 ± 0.5 kcal/mol higher than compacted, demonstrating that GTP hydrolysis is variable with lattice state and slower at the MT tip.

摘要

微管(MTs)是由αβ-微管蛋白异二聚体组成的大型细胞骨架聚合物,能够随机从聚合状态转变为解聚状态,反之亦然。解聚与β-微管内鸟苷三磷酸(GTP)的水解偶联。与游离异二聚体相比,水解在 MT 晶格中更为有利,实验观察到的速率增加了 500-700 倍,对应于能量势垒降低了 3.8-4.0 kcal/mol。突变研究表明,α-微管蛋白残基α:E254 和α:D251 是催化残基,完成了 MT 晶格中较低异二聚体的β-微管活性位点。然而,游离异二聚体中 GTP 水解的机制尚不清楚。此外,关于 GTP 状态晶格相对于 GDP 状态是扩展还是压缩,以及水解是否需要“压缩”的 GDP 状态晶格,一直存在争议。在这项工作中,我们进行了广泛的量子力学/分子力学模拟,并使用过渡温度元动力学自由能采样对压缩和扩展的二聚体复合物以及游离异二聚体进行了采样,以提供对 GTP 水解机制的清晰理解。发现α:E254 是在压缩晶格中的催化残基,而在扩展晶格中,关键盐桥相互作用的破坏使α:E254 的效率降低。模拟结果表明,与游离异二聚体相比,压缩晶格的势垒降低了 3.8±0.5 kcal/mol,与实验动力学测量结果非常吻合。此外,还发现扩展晶格的势垒比压缩晶格高 6.3±0.5 kcal/mol,表明 GTP 水解随晶格状态而变化,在 MT 尖端较慢。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验