Suppr超能文献

一种使用连续波多普勒雷达传感器和卷积神经网络来检测咳嗽及其他手势的运动检测系统。

A Movement Detection System Using Continuous-Wave Doppler Radar Sensor and Convolutional Neural Network to Detect Cough and Other Gestures.

作者信息

Chuma Euclides Lourenco, Iano Yuzo

机构信息

School of Electrical and Computer EngineeringUniversity of Campinas (UNICAMP) Campinas 13083-970 Brazil.

School of Electrical and Computer EngineeringUniversity of Campinas Campinas 13083-970 Brazil.

出版信息

IEEE Sens J. 2020 Oct 5;21(3):2921-2928. doi: 10.1109/JSEN.2020.3028494. eCollection 2021 Feb 1.

Abstract

The 2019 coronavirus disease (COVID-19) pandemic has contaminated millions of people, resulting in high fatality rates. Recently emerging artificial intelligence technologies like the convolutional neural network (CNN) are strengthening the power of imaging tools and can help medical specialists. CNN combined with other sensors creates a new solution to fight COVID-19 transmission. This paper presents a novel method to detect coughs (an important symptom of COVID-19) using a K-band continuous-wave Doppler radar with most popular CNNs architectures: AlexNet, VGG-19, and GoogLeNet. The proposed method has cough detection test accuracy of 88.0% using AlexNet CNN with people 1 m away from the microwave radar sensor, test accuracy of 80.0% with people 3 m away from the radar sensor, and test accuracy of 86.5% with a single mixed dataset with people 1 m and 3 m away from the radar sensor. The K-band radar sensor is inexpensive, completely camera-free and collects no personally-identifying information, allaying privacy concerns while still providing in-depth public health data on individual, local, and national levels. Additionally, the measurements are conducted without human contact, making the process proposed in this work safe for the investigation of contagious diseases such as COVID-19. The proposed cough detection system using microwave radar sensor has environmental robustness and dark/light-independence, unlike traditional cameras. The proposed microwave radar sensor can be used alone or in group with other sensors in a fusion sensor system to create a robust system to detect cough and other movements, mainly if using CNNs.

摘要

2019冠状病毒病(COVID-19)大流行已感染数百万人,导致高死亡率。最近出现的人工智能技术,如卷积神经网络(CNN),正在增强成像工具的能力,并有助于医学专家。CNN与其他传感器相结合,为抗击COVID-19传播创造了一种新的解决方案。本文提出了一种使用K波段连续波多普勒雷达与最流行的CNN架构(AlexNet、VGG-19和GoogLeNet)来检测咳嗽(COVID-19的一个重要症状)的新方法。所提出的方法在使用AlexNet CNN且人员距离微波雷达传感器1米时咳嗽检测测试准确率为88.0%,人员距离雷达传感器3米时测试准确率为80.0%,在包含人员距离雷达传感器1米和3米的单一混合数据集时测试准确率为86.5%。K波段雷达传感器价格低廉,完全无需摄像头,且不收集个人身份信息,在提供个人、地方和国家层面深入公共卫生数据的同时消除了隐私担忧。此外,测量过程无需人与人接触,使得本文提出的方法对于诸如COVID-19等传染病的调查是安全的。与传统摄像头不同,所提出的使用微波雷达传感器的咳嗽检测系统具有环境鲁棒性且不受明暗影响。所提出的微波雷达传感器可以单独使用,也可以与融合传感器系统中的其他传感器组合使用,以创建一个强大的系统来检测咳嗽和其他动作,特别是在使用CNN时。

相似文献

引用本文的文献

本文引用的文献

2
Artificial intelligence-enabled rapid diagnosis of patients with COVID-19.人工智能助力 COVID-19 患者快速诊断。
Nat Med. 2020 Aug;26(8):1224-1228. doi: 10.1038/s41591-020-0931-3. Epub 2020 May 19.
4
Artificial Intelligence (AI) applications for COVID-19 pandemic.用于2019冠状病毒病大流行的人工智能(AI)应用程序。
Diabetes Metab Syndr. 2020 Jul-Aug;14(4):337-339. doi: 10.1016/j.dsx.2020.04.012. Epub 2020 Apr 14.
5
Artificial intelligence and machine learning to fight COVID-19.利用人工智能和机器学习抗击新冠疫情。
Physiol Genomics. 2020 Apr 1;52(4):200-202. doi: 10.1152/physiolgenomics.00029.2020. Epub 2020 Mar 27.
6
Clinical Characteristics of Coronavirus Disease 2019 in China.《中国 2019 年冠状病毒病临床特征》
N Engl J Med. 2020 Apr 30;382(18):1708-1720. doi: 10.1056/NEJMoa2002032. Epub 2020 Feb 28.
7
Responding to Covid-19 - A Once-in-a-Century Pandemic?应对新冠疫情——一场百年一遇的大流行病?
N Engl J Med. 2020 Apr 30;382(18):1677-1679. doi: 10.1056/NEJMp2003762. Epub 2020 Feb 28.
8
An overview of deep learning in medical imaging focusing on MRI.深度学习在医学影像中的概述,重点是 MRI。
Z Med Phys. 2019 May;29(2):102-127. doi: 10.1016/j.zemedi.2018.11.002. Epub 2018 Dec 13.
9
Deep Neural Networks for Identifying Cough Sounds.用于识别咳嗽声音的深度神经网络
IEEE Trans Biomed Circuits Syst. 2016 Oct;10(5):1003-1011. doi: 10.1109/TBCAS.2016.2598794. Epub 2016 Sep 16.
10
Recognizing flu-like symptoms from videos.从视频中识别流感样症状。
BMC Bioinformatics. 2014 Sep 12;15(1):300. doi: 10.1186/1471-2105-15-300.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验