Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
Department of Physical Therapy, University of Dayton, 300 College Park, Dayton, OH 45469, USA.
Sensors (Basel). 2022 Jul 22;22(15):5470. doi: 10.3390/s22155470.
Human Activity Recognition (HAR) that includes gait analysis may be useful for various rehabilitation and telemonitoring applications. Current gait analysis methods, such as wearables or cameras, have privacy and operational constraints, especially when used with older adults. Millimeter-Wave (MMW) radar is a promising solution for gait applications because of its low-cost, better privacy, and resilience to ambient light and climate conditions. This paper presents a novel human gait analysis method that combines the micro-Doppler spectrogram and skeletal pose estimation using MMW radar for HAR. In our approach, we used the Texas Instruments IWR6843ISK-ODS MMW radar to obtain the micro-Doppler spectrogram and point clouds for 19 human joints. We developed a multilayer Convolutional Neural Network (CNN) to recognize and classify five different gait patterns with an accuracy of 95.7 to 98.8% using MMW radar data. During training of the CNN algorithm, we used the extracted 3D coordinates of 25 joints using the Kinect V2 sensor and compared them with the point clouds data to improve the estimation. Finally, we performed a real-time simulation to observe the point cloud behavior for different activities and validated our system against the ground truth values. The proposed method demonstrates the ability to distinguish between different human activities to obtain clinically relevant gait information.
人体活动识别(HAR)包括步态分析,可用于各种康复和远程监护应用。目前的步态分析方法,如可穿戴设备或摄像机,存在隐私和操作限制,特别是在老年人中使用时。毫米波(MMW)雷达因其低成本、更好的隐私性以及对环境光和气候条件的适应性,是步态应用的一种有前途的解决方案。本文提出了一种新的人体步态分析方法,该方法结合了微多普勒光谱和骨骼姿势估计,使用 MMW 雷达进行 HAR。在我们的方法中,我们使用德州仪器 IWR6843ISK-ODS MMW 雷达来获取微多普勒光谱和 19 个人体关节的点云。我们开发了一个多层卷积神经网络(CNN),使用 MMW 雷达数据识别和分类 5 种不同的步态模式,准确率为 95.7%到 98.8%。在 CNN 算法的训练过程中,我们使用 Kinect V2 传感器提取的 25 个关节的 3D 坐标,并将其与点云数据进行比较,以提高估计的准确性。最后,我们进行了实时模拟,观察不同活动的点云行为,并根据地面真实值验证了我们的系统。该方法能够区分不同的人体活动,以获得具有临床意义的步态信息。