Suppr超能文献

从视频中识别流感样症状。

Recognizing flu-like symptoms from videos.

作者信息

Thi Tuan Hue, Wang Li, Ye Ning, Zhang Jian, Maurer-Stroh Sebastian, Cheng Li

机构信息

Bioinformatics Institute, A*STAR, Singapore, Singapore.

出版信息

BMC Bioinformatics. 2014 Sep 12;15(1):300. doi: 10.1186/1471-2105-15-300.

Abstract

BACKGROUND

Vision-based surveillance and monitoring is a potential alternative for early detection of respiratory disease outbreaks in urban areas complementing molecular diagnostics and hospital and doctor visit-based alert systems. Visible actions representing typical flu-like symptoms include sneeze and cough that are associated with changing patterns of hand to head distances, among others. The technical difficulties lie in the high complexity and large variation of those actions as well as numerous similar background actions such as scratching head, cell phone use, eating, drinking and so on.

RESULTS

In this paper, we make a first attempt at the challenging problem of recognizing flu-like symptoms from videos. Since there was no related dataset available, we created a new public health dataset for action recognition that includes two major flu-like symptom related actions (sneeze and cough) and a number of background actions. We also developed a suitable novel algorithm by introducing two types of Action Matching Kernels, where both types aim to integrate two aspects of local features, namely the space-time layout and the Bag-of-Words representations. In particular, we show that the Pyramid Match Kernel and Spatial Pyramid Matching are both special cases of our proposed kernels. Besides experimenting on standard testbed, the proposed algorithm is evaluated also on the new sneeze and cough set. Empirically, we observe that our approach achieves competitive performance compared to the state-of-the-arts, while recognition on the new public health dataset is shown to be a non-trivial task even with simple single person unobstructed view.

CONCLUSIONS

Our sneeze and cough video dataset and newly developed action recognition algorithm is the first of its kind and aims to kick-start the field of action recognition of flu-like symptoms from videos. It will be challenging but necessary in future developments to consider more complex real-life scenario of detecting these actions simultaneously from multiple persons in possibly crowded environments.

摘要

背景

基于视觉的监测是城市地区早期发现呼吸道疾病爆发的一种潜在替代方法,可作为分子诊断以及基于医院就诊和医生问诊的警报系统的补充。代表典型流感样症状的可见行为包括打喷嚏和咳嗽,这些行为与手到头部距离的变化模式等有关。技术难题在于这些行为的高度复杂性和巨大变异性,以及众多类似的背景行为,如挠头、使用手机、进食、饮水等。

结果

在本文中,我们首次尝试解决从视频中识别流感样症状这一具有挑战性的问题。由于没有可用的相关数据集,我们创建了一个用于动作识别的新公共卫生数据集,其中包括两种与流感样症状相关的主要行为(打喷嚏和咳嗽)以及一些背景行为。我们还通过引入两种类型的动作匹配核开发了一种合适的新颖算法,这两种类型的核都旨在整合局部特征的两个方面,即时空布局和词袋表示。特别地,我们表明金字塔匹配核和空间金字塔匹配都是我们提出的核的特殊情况。除了在标准测试平台上进行实验外,所提出的算法还在新的打喷嚏和咳嗽数据集上进行了评估。从经验上看,我们观察到与现有技术相比,我们的方法具有有竞争力的性能,而即使是在简单的单人无遮挡视图下,在新的公共卫生数据集上的识别也是一项不平凡的任务。

结论

我们的打喷嚏和咳嗽视频数据集以及新开发的动作识别算法尚属首次,旨在开启从视频中识别流感样症状的动作识别领域。在未来的发展中,考虑在可能拥挤的环境中同时从多个人检测这些行为的更复杂现实场景将具有挑战性,但却是必要的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a9af/4180141/e37e72e25c17/12859_2013_6588_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验