Suppr超能文献

全面的 scRNA-seq 模型揭示了人类血管疾病中动脉内皮细胞的异质性和代谢偏好。

Comprehensive scRNA-seq Model Reveals Artery Endothelial Cell Heterogeneity and Metabolic Preference in Human Vascular Disease.

机构信息

Department of Cardiology, Daping Hospital, The Third Military Medical University (Army Medical University), Chongqing, People's Republic of China.

Key Laboratory of Geriatric Cardiovascular and Cerebrovascular Disease (Army Medical University), Ministry of Education, Beijing, People's Republic of China.

出版信息

Interdiscip Sci. 2024 Mar;16(1):104-122. doi: 10.1007/s12539-023-00591-x. Epub 2023 Nov 17.

Abstract

Vascular disease is one of the major causes of death worldwide. Endothelial cells are important components of the vascular structure. A better understanding of the endothelial cell changes in the development of vascular disease may provide new targets for clinical treatment strategies. Single-cell RNA sequencing can serve as a powerful tool to explore transcription patterns, as well as cell type identity. Our current study is based on comprehensive scRNA-seq data of several types of human vascular disease datasets with deep-learning-based algorithm. A gene set scoring system, created based on cell clustering, may help to identify the relative stage of the development of vascular disease. Metabolic preference patterns were estimated using a graphic neural network model. Overall, our study may provide potential treatment targets for retaining normal endothelial function under pathological situations.

摘要

血管疾病是全球主要死亡原因之一。内皮细胞是血管结构的重要组成部分。更好地了解血管疾病发展过程中内皮细胞的变化,可能为临床治疗策略提供新的靶点。单细胞 RNA 测序可以作为一种强大的工具,用于探索转录模式和细胞类型的特征。我们目前的研究基于几种人类血管疾病数据集的综合 scRNA-seq 数据,并结合基于深度学习的算法。基于细胞聚类创建的基因集评分系统,可能有助于识别血管疾病发展的相对阶段。使用图形神经网络模型来估计代谢偏好模式。总的来说,我们的研究可能为在病理情况下保留正常内皮功能提供潜在的治疗靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验