Suppr超能文献

代谢组学中的人工智能:当前综述

Artificial Intelligence in Metabolomics: A Current Review.

作者信息

Chi Jinhua, Shu Jingmin, Li Ming, Mudappathi Rekha, Jin Yan, Lewis Freeman, Boon Alexandria, Qin Xiaoyan, Liu Li, Gu Haiwei

机构信息

College of Health Solutions, Arizona State University, Phoenix, AZ 85004, USA.

Center for Translational Science, Florida International University, Port St. Lucie, FL 34987, USA.

出版信息

Trends Analyt Chem. 2024 Sep;178. doi: 10.1016/j.trac.2024.117852. Epub 2024 Jul 3.

Abstract

Metabolomics and artificial intelligence (AI) form a synergistic partnership. Metabolomics generates large datasets comprising hundreds to thousands of metabolites with complex relationships. AI, aiming to mimic human intelligence through computational modeling, possesses extraordinary capabilities for big data analysis. In this review, we provide a recent overview of the methodologies and applications of AI in metabolomics studies in the context of systems biology and human health. We first introduce the AI concept, history, and key algorithms for machine learning and deep learning, summarizing their strengths and weaknesses. We then discuss studies that have successfully used AI across different aspects of metabolomic analysis, including analytical detection, data preprocessing, biomarker discovery, predictive modeling, and multi-omics data integration. Lastly, we discuss the existing challenges and future perspectives in this rapidly evolving field. Despite limitations and challenges, the combination of metabolomics and AI holds great promises for revolutionary advancements in enhancing human health.

摘要

代谢组学与人工智能(AI)形成了一种协同合作关系。代谢组学产生包含数百至数千种具有复杂关系的代谢物的大型数据集。旨在通过计算建模模拟人类智能的人工智能,在大数据分析方面具有非凡的能力。在本综述中,我们在系统生物学和人类健康的背景下,对人工智能在代谢组学研究中的方法和应用进行了最新概述。我们首先介绍人工智能的概念、历史以及机器学习和深度学习的关键算法,总结它们的优缺点。然后,我们讨论了在代谢组学分析的不同方面成功使用人工智能的研究,包括分析检测、数据预处理、生物标志物发现、预测建模和多组学数据整合。最后,我们讨论了这个快速发展领域中存在的挑战和未来前景。尽管存在局限性和挑战,但代谢组学与人工智能的结合在促进人类健康方面取得革命性进展具有巨大潜力。

相似文献

1
Artificial Intelligence in Metabolomics: A Current Review.
Trends Analyt Chem. 2024 Sep;178. doi: 10.1016/j.trac.2024.117852. Epub 2024 Jul 3.
2
Generative AI Models in Time-Varying Biomedical Data: Scoping Review.
J Med Internet Res. 2025 Mar 10;27:e59792. doi: 10.2196/59792.
4
Advancements in AI for Computational Biology and Bioinformatics: A Comprehensive Review.
Methods Mol Biol. 2025;2952:87-105. doi: 10.1007/978-1-0716-4690-8_6.
5
Advancements in Using AI for Dietary Assessment Based on Food Images: Scoping Review.
J Med Internet Res. 2024 Nov 15;26:e51432. doi: 10.2196/51432.
7
Artificial Intelligence in cancer epigenomics: a review on advances in pan-cancer detection and precision medicine.
Epigenetics Chromatin. 2025 Jun 14;18(1):35. doi: 10.1186/s13072-025-00595-5.
10
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.

引用本文的文献

1
Applications and advances of multi-omics technologies in gastrointestinal tumors.
Front Med (Lausanne). 2025 Jul 23;12:1630788. doi: 10.3389/fmed.2025.1630788. eCollection 2025.
2
Metabolomic stratification of shock: pathophysiological insights for personalized critical care.
Ann Intensive Care. 2025 Jul 31;15(1):109. doi: 10.1186/s13613-025-01532-1.
3
A comprehensive review on computational metabolomics: Advancing multiscale analysis through approaches.
Comput Struct Biotechnol J. 2025 Jul 13;27:3191-3215. doi: 10.1016/j.csbj.2025.07.016. eCollection 2025.
4
Chemotaxonomy, an Efficient Tool for Medicinal Plant Identification: Current Trends and Limitations.
Plants (Basel). 2025 Jul 19;14(14):2234. doi: 10.3390/plants14142234.
6
A Pilot Metabolomic Study for Diagnosing Infection in Immunocompromised Pediatric Cancer Patients.
Int J Mol Sci. 2025 Jun 20;26(13):5926. doi: 10.3390/ijms26135926.
7
Validated metabolomic biomarkers in psychiatric disorders: a narrative review.
Mol Med. 2025 Jul 9;31(1):254. doi: 10.1186/s10020-025-01258-7.
8
Modified Lipid Particle Recognition: A Link Between Atherosclerosis and Cancer?
Biology (Basel). 2025 Jun 11;14(6):675. doi: 10.3390/biology14060675.
9
Integrating metabolomics for precision nutrition in poultry: optimizing growth, feed efficiency, and health.
Front Vet Sci. 2025 May 22;12:1594749. doi: 10.3389/fvets.2025.1594749. eCollection 2025.
10
Cutting-edge AI tools revolutionizing scientific research in life sciences.
BioTechnologia (Pozn). 2025 Mar 31;106(1):77-102. doi: 10.5114/bta/200803. eCollection 2025.

本文引用的文献

1
DeepCORE: An interpretable multi-view deep neural network model to detect co-operative regulatory elements.
Comput Struct Biotechnol J. 2023 Dec 29;23:679-687. doi: 10.1016/j.csbj.2023.12.044. eCollection 2024 Dec.
2
Comprehensive scRNA-seq Model Reveals Artery Endothelial Cell Heterogeneity and Metabolic Preference in Human Vascular Disease.
Interdiscip Sci. 2024 Mar;16(1):104-122. doi: 10.1007/s12539-023-00591-x. Epub 2023 Nov 17.
3
5
Reconstructing Kinetic Models for Dynamical Studies of Metabolism using Generative Adversarial Networks.
Nat Mach Intell. 2022;4(8):710-719. doi: 10.1038/s42256-022-00519-y. Epub 2022 Aug 30.
6
Unveiling the future of metabolic medicine: omics technologies driving personalized solutions for precision treatment of metabolic disorders.
Biochem Biophys Res Commun. 2023 Nov 19;682:1-20. doi: 10.1016/j.bbrc.2023.09.064. Epub 2023 Sep 29.
7
Scientific discovery in the age of artificial intelligence.
Nature. 2023 Aug;620(7972):47-60. doi: 10.1038/s41586-023-06221-2. Epub 2023 Aug 2.
8
Recent Review on Selected Xenobiotics and Their Impacts on Gut Microbiome and Metabolome.
Trends Analyt Chem. 2023 Sep;166. doi: 10.1016/j.trac.2023.117155. Epub 2023 Jun 28.
9
AI-powered therapeutic target discovery.
Trends Pharmacol Sci. 2023 Sep;44(9):561-572. doi: 10.1016/j.tips.2023.06.010. Epub 2023 Jul 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验