Suppr超能文献

扩展乳腺癌监测联盟浸润性乳腺癌模型。

Extending the Breast Cancer Surveillance Consortium Model of Invasive Breast Cancer.

机构信息

Department of Economics, Applied Statistics, and International Business, New Mexico State University, Las Cruces, NM.

Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA.

出版信息

J Clin Oncol. 2024 Mar 1;42(7):779-789. doi: 10.1200/JCO.22.02470. Epub 2023 Nov 17.

Abstract

PURPOSE

We extended the Breast Cancer Surveillance Consortium (BCSC) version 2 (v2) model of invasive breast cancer risk to include BMI, extended family history of breast cancer, and age at first live birth (version 3 [v3]) to better inform appropriate breast cancer prevention therapies and risk-based screening.

METHODS

We used Cox proportional hazards regression to estimate the age- and race- and ethnicity-specific relative hazards for family history of breast cancer, breast density, history of benign breast biopsy, BMI, and age at first live birth for invasive breast cancer in the BCSC cohort. We evaluated calibration using the ratio of expected-to-observed (E/O) invasive breast cancers in the cohort and discrimination using the area under the receiver operating characteristic curve (AUROC).

RESULTS

We analyzed data from 1,455,493 women age 35-79 years without a history of breast cancer. During a mean follow-up of 7.3 years, 30,266 women were diagnosed with invasive breast cancer. The BCSC v3 model had an E/O of 1.03 (95% CI, 1.01 to 1.04) and an AUROC of 0.646 for 5-year risk. Compared with the v2 model, discrimination of the v3 model improved most in Asian, White, and Black women. Among women with a BMI of 30.0-34.9 kg/m, the true-positive rate in women with an estimated 5-year risk of 3% or higher increased from 10.0% (v2) to 19.8% (v3) and the improvement was greater among women with a BMI of ≥35 kg/m (7.6%-19.8%).

CONCLUSION

The BCSC v3 model updates an already well-calibrated and validated breast cancer risk assessment tool to include additional important risk factors. The inclusion of BMI was associated with the largest improvement in estimated risk for individual women.

摘要

目的

我们扩展了乳腺癌监测联盟(BCSC)第 2 版(v2)模型,以纳入体重指数(BMI)、家族乳腺癌病史和首次活产年龄(第 3 版[v3]),以更好地提供适当的乳腺癌预防治疗和基于风险的筛查建议。

方法

我们使用 Cox 比例风险回归模型,估计 BCSC 队列中年龄、种族和民族特定的家族乳腺癌病史、乳房密度、良性乳腺活检史、BMI 和首次活产年龄与浸润性乳腺癌的相对危险度。我们通过评估队列中预期与观察到的(E/O)浸润性乳腺癌的比例来评估校准,通过接受者操作特征曲线(ROC)下面积(AUROC)来评估区分度。

结果

我们分析了 1455493 名年龄在 35-79 岁、无乳腺癌病史的女性数据。在平均 7.3 年的随访期间,有 30266 名女性被诊断为浸润性乳腺癌。BCSC v3 模型的 E/O 为 1.03(95%CI,1.01 至 1.04),5 年风险的 AUROC 为 0.646。与 v2 模型相比,v3 模型在亚洲、白种人和黑种女性中的区分度提高最大。在 BMI 为 30.0-34.9kg/m2的女性中,估计 5 年风险为 3%或更高的女性的真阳性率从 v2 的 10.0%增加到 v3 的 19.8%,而 BMI 大于等于 35kg/m2的女性的改善幅度更大(7.6%-19.8%)。

结论

BCSC v3 模型更新了一个已经校准和验证良好的乳腺癌风险评估工具,纳入了其他重要的风险因素。BMI 的纳入与个体女性估计风险的最大改善相关。

相似文献

2
Validation of the breast cancer surveillance consortium model of breast cancer risk.验证乳腺癌监测联盟模型的乳腺癌风险预测能力。
Breast Cancer Res Treat. 2019 Jun;175(2):519-523. doi: 10.1007/s10549-019-05167-2. Epub 2019 Feb 22.

引用本文的文献

7

本文引用的文献

3
Cancer statistics, 2022.癌症统计数据,2022 年。
CA Cancer J Clin. 2022 Jan;72(1):7-33. doi: 10.3322/caac.21708. Epub 2022 Jan 12.
10
Validation of the breast cancer surveillance consortium model of breast cancer risk.验证乳腺癌监测联盟模型的乳腺癌风险预测能力。
Breast Cancer Res Treat. 2019 Jun;175(2):519-523. doi: 10.1007/s10549-019-05167-2. Epub 2019 Feb 22.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验