Suppr超能文献

乳腺钼靶检查中乳腺纹理的影像组学实质表型及其与乳腺癌风险的关联

Radiomic Parenchymal Phenotypes of Breast Texture from Mammography and Association with Risk of Breast Cancer.

作者信息

Winham Stacey J, McCarthy Anne Marie, Scott Christopher G, Gastounioti Aimilia, Horng Hannah, Norman Aaron D, Mankowski Walter C, Pantalone Lauren, Jensen Matthew R, Acciavatti Raymond J, Maidment Andrew D A, Cohen Eric A, Brandt Kathleen R, Conant Emily F, Kerlikowske Karla M, Kontos Despina, Vachon Celine M

机构信息

Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Biobusiness Bldg 5-81, Rochester, MN 55905.

Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, Pa.

出版信息

Radiology. 2025 May;315(2):e240281. doi: 10.1148/radiol.240281.

Abstract

Background Parenchymal phenotypes reflect the intrinsic heterogeneity of both tissue structure and distribution on mammograms. Purpose To define parenchymal phenotypes on the basis of radiomic texture features derived from full-field digital mammography (FFDM) in breast screening populations and assess associations of parenchymal phenotypes with future risk of breast cancer and masking (false-negative [FN] findings or interval cancers), beyond breast density, and by race and ethnicity Materials and Methods A two-stage study design included a retrospective cross-sectional study of 30 000 randomly selected women with four-view FFDM (mean age, 57.4 years) and a nested case-control study of 1055 women with invasive breast cancer (151 Black and 893 White women) matched to 2764 women without breast cancer (411 Black and 2345 White women) (mean age, 60.4 years) sampled from April 2008 to September 2019 from three diverse breast screening practices. Radiomic features ( = 390) were extracted and standardized using an automated pipeline and adjusted for age and practice. Variation was classified using hierarchical clustering and principal component (PC) analysis. The resulting clusters and PCs were examined for association with invasive breast cancer risk, FN findings on mammograms, and symptomatic interval cancers beyond radiologist-reported Breast Imaging Reporting and Data System (BI-RADS) breast density using conditional logistic regression and likelihood ratio tests. Discrimination for breast cancer was assessed with area under the receiver operating characteristic curve (AUC). Results Six clusters and six PCs were defined, replicated, and associated with a higher risk of invasive breast cancer ( = .01 and < .001, respectively) after adjustment for age, body mass index (calculated as weight in kilograms divided by height in meters squared), and BI-RADS breast density. PCs showed similar associations among Black and White women ( = .23). PCs were also positively associated with FN findings ( = .004) and symptomatic interval cancers ( = .006). AUC improved for all breast cancer end points when incorporating PCs, with the greatest improvement shown in prediction of FN findings (AUC with vs without PCs, 0.73 [95% CI: 0.68, 0.78] vs 0.66 [95% CI: 0.61, 0.71] , respectively; = .004) and symptomatic interval cancers (AUC with vs without PCs, 0.77 [95% CI: 0.71, 0.82] vs 0.68 [95% CI: 0.62, 0.74], respectively; = .006). Conclusion Parenchymal phenotypes based on radiomic features extracted from FFDM were associated with a higher risk of invasive breast cancer, specifically for FN findings and symptomatic interval cancer. © RSNA, 2025 See also the editorial by Mesurolle and El Khoury in this issue.

摘要

背景 实质表型反映了乳房X线照片上组织结构和分布的内在异质性。目的 基于从乳腺筛查人群的全视野数字化乳腺摄影(FFDM)中提取的影像组学纹理特征来定义实质表型,并评估实质表型与未来乳腺癌风险及掩盖现象(假阴性[FN]结果或间期癌)之间的关联,超越乳腺密度,并按种族和民族进行分析。材料与方法 两阶段研究设计包括对30000名随机选取的进行四视图FFDM检查的女性(平均年龄57.4岁)进行回顾性横断面研究,以及对1055名浸润性乳腺癌女性(151名黑人女性和893名白人女性)进行巢式病例对照研究,这些患者与2764名无乳腺癌女性(411名黑人女性和2345名白人女性)(平均年龄60.4岁)匹配,这些样本于2008年4月至2019年9月从三种不同的乳腺筛查机构中选取。使用自动化流程提取并标准化影像组学特征(n = 390),并对年龄和机构进行调整。使用层次聚类和主成分(PC)分析对变异进行分类。使用条件逻辑回归和似然比检验,检查所得聚类和主成分与浸润性乳腺癌风险、乳房X线照片上FN结果以及超出放射科医生报告的乳腺影像报告和数据系统(BI-RADS)乳腺密度的有症状间期癌之间的关联。使用受试者操作特征曲线(AUC)下的面积评估对乳腺癌的鉴别诊断能力。结果 定义、复制了六个聚类和六个主成分,在调整年龄、体重指数(以千克为单位的体重除以以米为单位的身高的平方)和BI-RADS乳腺密度后,它们与浸润性乳腺癌风险较高相关(分别为P = 0.01和P < 0.001)。主成分在黑人和白人女性中显示出相似的关联(P = 0.23)。主成分也与FN结果(P = 0.004)和有症状间期癌(P = 0.006)呈正相关。纳入主成分后,所有乳腺癌终点的AUC均有所改善,在预测FN结果方面改善最大(有主成分与无主成分时的AUC分别为0.73[95%CI:0.68,0.78]和0.66[95%CI:0.61,0.71];P = 0.004)以及有症状间期癌(有主成分与无主成分时的AUC分别为0.77[95%CI:0.71,0.82]和0.68[95%CI:0.62,0.74];P = 0.006)。结论 基于从FFDM中提取的影像组学特征的实质表型与浸润性乳腺癌风险较高相关,特别是对于FN结果和有症状间期癌。©RSNA,2025 另见本期Mesurolle和El Khoury的社论。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验