NanoBioMedical Centre, Adam Mickiewicz University in Poznań, Wszechnicy Piastowskiej 3, 61-614 Poznań, Poland.
Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.
J Photochem Photobiol B. 2023 Dec;249:112813. doi: 10.1016/j.jphotobiol.2023.112813. Epub 2023 Nov 8.
Cancer remains a leading cause of mortality worldwide, necessitating the development of innovative therapeutic approaches. Nanoparticle-based drug delivery systems have garnered significant interest due to their multifunctionality, offering the potential to enhance cancer treatment efficacy and improve patient tolerability. Membrane-coated drug delivery systems hold great potential for enhancing the therapeutic outcome of nanoparticle-based anticancer therapies. In this study, we report the synthesis of multifunctional iron-functionalized mesoporous polydopamine nanoparticles (MPDAFe NPs). These nanoformulations demonstrate substantial potential for combining efficient drug delivery and magnetic resonance imaging (MRI) and showcase the advantages of biomimetic coating with tumor cell-derived membranes. This coating confers prolonged circulation and improved the targeting capabilities of the nanoparticles. Furthermore, comprehensive biosafety evaluations reveal negligible toxicity to normal cells, while the combined chemo- and phototherapy exhibited significant cytotoxicity towards cancer cells. Additionally, the photothermal effect evaluation highlights the enhanced cytotoxicity achieved through laser irradiation, showcasing the synergistic effects of the nanomaterials and photothermal therapy. Importantly, our chemotherapeutic effect evaluation demonstrates the superior efficacy of doxorubicin-loaded MPDAFe@Mem NPs (cancer cell membrane-coated MPDAFe NPs) in inhibiting cancer cell viability and proliferation, surpassing the potency of free doxorubicin. This study comprehensively investigates theranostic, membrane-coated drug delivery systems, underlining their potential to increase the efficacy of cancer treatment strategies. The multifunctional nature of the iron-functionalized polydopamine nanoparticles allows for efficient drug delivery and imaging capabilities, while the biomimetic coating enhances their biocompatibility and targeting ability. These findings contribute valuable insights towards the development of advanced nanomedicine for improved cancer therapeutics.
癌症仍然是全球主要的死亡原因,因此需要开发创新的治疗方法。基于纳米粒子的药物输送系统由于其多功能性而引起了极大的关注,具有提高癌症治疗效果和改善患者耐受性的潜力。膜包覆的药物输送系统为提高基于纳米粒子的抗癌疗法的治疗效果提供了巨大的潜力。在这项研究中,我们报告了多功能铁功能化介孔聚多巴胺纳米粒子(MPDAFe NPs)的合成。这些纳米制剂具有将高效药物输送和磁共振成像(MRI)相结合的巨大潜力,并展示了具有肿瘤细胞衍生膜的仿生涂层的优势。这种涂层赋予了纳米粒子更长的循环时间和更好的靶向能力。此外,全面的生物安全性评估显示对正常细胞几乎没有毒性,而化学和光疗联合治疗对癌细胞表现出显著的细胞毒性。此外,光热效应评估突出了通过激光照射实现的增强的细胞毒性,展示了纳米材料和光热疗法的协同作用。重要的是,我们的化疗效果评估表明,载多柔比星的 MPDAFe@Mem NPs(细胞膜包覆的 MPDAFe NPs)在抑制癌细胞活力和增殖方面的疗效优于游离多柔比星,具有更高的疗效。这项研究全面研究了治疗学、膜包覆的药物输送系统,强调了它们提高癌症治疗策略效果的潜力。铁功能化聚多巴胺纳米粒子的多功能性质允许高效的药物输送和成像能力,而仿生涂层则增强了它们的生物相容性和靶向能力。这些发现为开发先进的纳米医学以改善癌症治疗提供了有价值的见解。
J Photochem Photobiol B. 2023-12
Molecules. 2022-10-1
ACS Appl Mater Interfaces. 2021-1-27
Pharmaceutics. 2024-7-23