Triguero-Platero Gloria, Ziebert Falko, Bonilla Luis L
Institute for Theoretical Physics, Heidelberg University, D-69120 Heidelberg, Germany.
Department of Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain and G. Millán Institute for Fluid Dynamics, Nanoscience and Industrial Mathematics, Universidad Carlos III de Madrid, 28911 Leganés, Spain.
Phys Rev E. 2023 Oct;108(4-1):044118. doi: 10.1103/PhysRevE.108.044118.
Tissue dynamics and collective cell motion are crucial biological processes. Their biological machinery is mostly known, and simulation models such as the active vertex model exist and yield reasonable agreement with experimental observations such as tissue fluidization or fingering. However, a good and well-founded continuum description for tissues remains to be developed. In this work, we derive a macroscopic description for a two-dimensional cell monolayer by coarse-graining the vertex model through the Poisson bracket approach. We obtain equations for cell density, velocity, and the cellular shape tensor. We then study the homogeneous steady states, their stability (which coincides with thermodynamic stability), and especially their behavior under an externally applied shear. Our results contribute to elucidate the interplay between flow and cellular shape. The obtained macroscopic equations present a good starting point for adding cell motion, morphogenetic, and other biologically relevant processes.
组织动力学和集体细胞运动是至关重要的生物学过程。它们的生物学机制大多为人所知,诸如活性顶点模型等模拟模型也已存在,并与诸如组织流化或指状化等实验观察结果达成了合理的一致。然而,尚未开发出一种对组织的良好且有充分依据的连续介质描述。在这项工作中,我们通过泊松括号方法对顶点模型进行粗粒化,从而推导出二维细胞单层的宏观描述。我们得到了细胞密度、速度和细胞形状张量的方程。然后,我们研究了均匀稳态、它们的稳定性(这与热力学稳定性一致),特别是它们在外部施加剪切力下的行为。我们的结果有助于阐明流动与细胞形状之间的相互作用。所得到的宏观方程为添加细胞运动、形态发生及其他生物学相关过程提供了一个良好的起点。