Department of Biotechnology, Kinnaird College for Women, 93-Jail Road, Lahore, 54000, Pakistan.
Laboratoire de Biologie Des Ligneux Et Des Grandes Cultures, INRAE USC1328, University of Orleans, 45067CEDEX 2, Orleans, France.
Appl Biochem Biotechnol. 2024 Aug;196(8):4874-4899. doi: 10.1007/s12010-023-04781-7. Epub 2023 Nov 18.
Zinc oxide nanoparticles (ZnONPs) are enormously popular semi-conductor metal oxides with diverse applications in every field of science. Many physical and chemical methods applied for the synthesis of ZnONPs are being rejected due to their environmental hazards. Therefore, ZnONPs synthesized from plant extracts are steered as eco-friendly showing more biocompatibility and biodegradability. Additionally, various synthesis conditions such as the type of precursor salt also play a role in influencing the physicochemical and biological properties of ZnONPs. In this study, green synthesis of ZnONPs from Acacia nilotica was carried out using zinc acetate (ZA-AN-ZNPs), zinc nitrate (ZN-AN-ZNPs), and zinc sulfate (ZS-AN-ZNPs) precursor salts. Surprisingly, characterization of ZnONPs using UV-visible spectroscopy, TEM, XRD, and EDX revealed the important role precursor salts played in influencing the size and shape of ZnONPs, i.e., 20-23 nm spherical (ZA-AN-ZNPs), 55-59 nm triangular (ZN-AN-ZNPs), and 94-97 nm nano-flowers (ZS-AN-ZNPs). FTIR analysis showed the involvement of alkaloids, alcohols, carboxylic acid, and phenolic compounds present in Acacia nilotica extract during the synthesis process. Since different precursor salts showed different morphology of ZnONPs, their biological activities were also variable. ZN-AN-ZNPs showed the highest cytotoxicity towards HepG2 cells with the lowest cell viability (28.92 ± 0.99%), highest ROS/RNS production (3425.3 ± 184.58 relative DHR123 fluorescence), and loss of mitochondrial membrane potential (1645.2 ± 32.12 relative fluorescence unit) as well as induced significant caspase-3 gene expression. In addition to this, studying the zone of inhibitions and minimum bactericidal and inhibitory concentrations of ZnONPs showed their exceptional potential as antibacterial agents. At MIC as low as 8 µg/mL, ZA-AN-ZNPs and ZN-AN-ZNPs exhibited significant bactericidal activities against human pathogens Klebsiella pneumoniae and Listeria monocytogenes, respectively. Furthermore, alkaline phosphatase, DNA/RNA leakage, and phosphate ion leakage studies revealed that a damage to the bacterial cell membrane and cell wall is involved in mediating the antibacterial effects of ZnONPs.
氧化锌纳米粒子(ZnONPs)是一种非常受欢迎的半导体金属氧化物,在科学的各个领域都有广泛的应用。许多应用于 ZnONPs 合成的物理和化学方法由于其对环境的危害而被拒绝。因此,从植物提取物中合成的 ZnONPs 被认为是环保的,具有更高的生物相容性和可生物降解性。此外,各种合成条件,如前体盐的类型,也会影响 ZnONPs 的物理化学和生物性质。在这项研究中,使用醋酸锌(ZA-AN-ZNPs)、硝酸锌(ZN-AN-ZNPs)和硫酸锌(ZS-AN-ZNPs)前体盐,从金合欢属植物中进行了 ZnONPs 的绿色合成。令人惊讶的是,使用紫外-可见光谱、TEM、XRD 和 EDX 对 ZnONPs 进行的表征表明,前体盐在影响 ZnONPs 的尺寸和形状方面起着重要作用,即 20-23nm 球形(ZA-AN-ZNPs)、55-59nm 三角形(ZN-AN-ZNPs)和 94-97nm 纳米花(ZS-AN-ZNPs)。傅里叶变换红外(FTIR)分析表明,金合欢属植物提取物中的生物碱、醇、羧酸和酚类化合物参与了合成过程。由于不同的前体盐表现出不同形态的 ZnONPs,它们的生物活性也不同。ZN-AN-ZNPs 对 HepG2 细胞表现出最高的细胞毒性,细胞活力最低(28.92±0.99%),ROS/RNS 产生最高(3425.3±184.58 相对 DHR123 荧光),线粒体膜电位丧失(1645.2±32.12 相对荧光单位),并诱导 caspase-3 基因表达显著增加。此外,研究 ZnONPs 的抑菌圈和最小杀菌及抑菌浓度表明,它们具有作为抗菌剂的特殊潜力。在最低抑菌浓度(MIC)低至 8μg/mL 的情况下,ZA-AN-ZNPs 和 ZN-AN-ZNPs 对人类病原体肺炎克雷伯菌和单核细胞增生李斯特菌分别表现出显著的杀菌活性。此外,碱性磷酸酶、DNA/RNA 泄漏和磷酸盐离子泄漏研究表明,ZnONPs 的抗菌作用涉及细菌细胞膜和细胞壁的损伤。
Int J Environ Res Public Health. 2022-5-1
Materials (Basel). 2022-3-15