Suppr超能文献

基于云端的非小细胞肺癌组织学分型 CT 扫描决策支持系统。

On-cloud decision-support system for non-small cell lung cancer histology characterization from thorax computed tomography scans.

机构信息

Department of Information Engineering, Università Politecnica delle Marche (UNIVPM), Ancona, Italy.

Information Systems Institute, University of Applied Sciences Western Switzerland (HES-SO), Sierre, Switzerland.

出版信息

Comput Med Imaging Graph. 2023 Dec;110:102310. doi: 10.1016/j.compmedimag.2023.102310. Epub 2023 Nov 10.

Abstract

Non-Small Cell Lung Cancer (NSCLC) accounts for about 85% of all lung cancers. Developing non-invasive techniques for NSCLC histology characterization may not only help clinicians to make targeted therapeutic treatments but also prevent subjects from undergoing lung biopsy, which is challenging and could lead to clinical implications. The motivation behind the study presented here is to develop an advanced on-cloud decision-support system, named LUCY, for non-small cell LUng Cancer histologY characterization directly from thorax Computed Tomography (CT) scans. This aim was pursued by selecting thorax CT scans of 182 LUng ADenocarcinoma (LUAD) and 186 LUng Squamous Cell carcinoma (LUSC) subjects from four openly accessible data collections (NSCLC-Radiomics, NSCLC-Radiogenomics, NSCLC-Radiomics-Genomics and TCGA-LUAD), in addition to the implementation and comparison of two end-to-end neural networks (the core layer of whom is a convolutional long short-term memory layer), the performance evaluation on test dataset (NSCLC-Radiomics-Genomics) from a subject-level perspective in relation to NSCLC histological subtype location and grade, and the dynamic visual interpretation of the achieved results by producing and analyzing one heatmap video for each scan. LUCY reached test Area Under the receiver operating characteristic Curve (AUC) values above 77% in all NSCLC histological subtype location and grade groups, and a best AUC value of 97% on the entire dataset reserved for testing, proving high generalizability to heterogeneous data and robustness. Thus, LUCY is a clinically-useful decision-support system able to timely, non-invasively and reliably provide visually-understandable predictions on LUAD and LUSC subjects in relation to clinically-relevant information.

摘要

非小细胞肺癌(NSCLC)约占所有肺癌的 85%。开发用于 NSCLC 组织学特征的非侵入性技术,不仅有助于临床医生进行靶向治疗,还可以防止患者进行具有挑战性的肺活检,这可能导致临床后果。本研究旨在开发一种先进的云端决策支持系统,命名为 LUCY,可直接从胸部计算机断层扫描(CT)扫描中对非小细胞 LUng Cancer 组织学进行特征描述。这一目标是通过从四个公开可用的数据集(NSCLC-Radiomics、NSCLC-Radiogenomics、NSCLC-Radiomics-Genomics 和 TCGA-LUAD)中选择 182 例 LUng ADenocarcinoma(LUAD)和 186 例 LUng Squamous Cell Carcinoma(LUSC)患者的胸部 CT 扫描来实现的,此外还实施和比较了两种端到端神经网络(其核心层是卷积长短期记忆层),从患者层面评估了测试数据集(NSCLC-Radiomics-Genomics)在 NSCLC 组织学亚型位置和分级方面的性能,并通过为每个扫描生成和分析一个热图视频,对所获得的结果进行动态视觉解释。LUCY 在所有 NSCLC 组织学亚型位置和分级组中的测试受试者工作特征曲线(AUC)值均超过 77%,在整个用于测试的数据集上的最佳 AUC 值为 97%,证明了对异质数据的高度泛化能力和鲁棒性。因此,LUCY 是一种临床有用的决策支持系统,能够及时、非侵入性且可靠地为 LUAD 和 LUSC 患者提供与临床相关信息相关的直观预测。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验