Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
School of Public Health, Chengdu Medical College, Chengdu, Sichuan, China.
Chemosphere. 2024 Jan;347:140715. doi: 10.1016/j.chemosphere.2023.140715. Epub 2023 Nov 16.
The microecological effects of plateau uranium mining are still unknown. In this study, we used 16S rRNA high-throughput sequencing to analyze the impact of plateau uranium mining on the microbial diversity and community structure of tailings soil, tunnel soil, and soil at different depths in an open pit. The results showed that uranium mining significantly reduced soil microbial community richness and diversity indicators, including Chao1, Pielou evenness, and Shannon index (P < 0.05). Uranium mining activities significantly reduced the abundance of RB41, Vicinamidactaceae, and Nitrospira (P < 0.05). Interestingly, the abundance of Thiobacillus, Sphingomonas, and Sulfuriferula significantly increased in the soil samples from various environments and depths during uranium mining (P < 0.05). Beta diversity analysis found that uranium mining resulted in the differentiation of soil microbial communities. Functional enrichment analysis found that uranium mining resulted in the functional enrichment of DNA binding response regulator, DNA helicase, methyl-accepting chemotaxis protein, and Helicase conserved C-terminal domain, whereas cell wall synthesis, nonspecific serine/threonine protein kinase, RNA polymerase sigma-70 factor, and ATP binding cassette transporter were significantly affected by uranium mining (P < 0.05). In addition, we also found that different uranium mining environments and soil depths enriched diverse microbial populations and functions to cope with the environmental pressures that were elicited by uranium mining, including Gaiella, Gemmatimonas, Lysobacter, Pseudomonas, signal transformation histidine kinase, DNA-directed DNA polymerase, and iron complex outer membrane receptor protein functions (P < 0.05). The results have enhanced our understanding of the impact of uranium mining on plateau soil microecological stability and the mechanism of microbial response to uranium mining activities for the first time and aided us in screening microbial strains that can promote the environmental remediation of uranium mining in plateaus.
高原铀矿开采的微生物生态效应尚不清楚。本研究采用 16S rRNA 高通量测序技术,分析了高原铀矿开采对尾矿土、隧道土和露天矿不同深度土壤微生物多样性和群落结构的影响。结果表明,铀矿开采显著降低了土壤微生物群落丰富度和多样性指数,包括 Chao1、Pielou 均匀度和 Shannon 指数(P<0.05)。铀矿开采活动显著降低了 RB41、Vicinamidactaceae 和 Nitrospira 的丰度(P<0.05)。有趣的是,在铀矿开采过程中,各种环境和深度的土壤样品中,Thiobacillus、Sphingomonas 和 Sulfuriferula 的丰度显著增加(P<0.05)。β多样性分析发现,铀矿开采导致土壤微生物群落的分化。功能富集分析发现,铀矿开采导致 DNA 结合反应调节因子、DNA 解旋酶、甲基接受趋化蛋白和螺旋酶保守 C 端结构域的功能富集,而细胞壁合成、非特异性丝氨酸/苏氨酸蛋白激酶、RNA 聚合酶 σ-70 因子和 ATP 结合盒转运蛋白受到铀矿开采的显著影响(P<0.05)。此外,我们还发现,不同的铀矿开采环境和土壤深度富集了多样化的微生物种群和功能,以应对铀矿开采引发的环境压力,包括 Gaiella、Gemmatimonas、Lysobacter、Pseudomonas、信号转导组氨酸激酶、DNA 指导的 DNA 聚合酶和铁复合物外膜受体蛋白功能(P<0.05)。这些结果首次增强了我们对铀矿开采对高原土壤微生态稳定性的影响以及微生物对铀矿开采活动的响应机制的理解,并有助于我们筛选能够促进高原铀矿开采环境修复的微生物菌株。