Suppr超能文献

用于评估冠心病的综合遗传-表观遗传测试的验证。

Validation of an Integrated Genetic-Epigenetic Test for the Assessment of Coronary Heart Disease.

机构信息

Cardio Diagnostics Inc Chicago IL USA.

Department of Psychiatry University of Iowa Iowa City IA USA.

出版信息

J Am Heart Assoc. 2023 Nov 21;12(22):e030934. doi: 10.1161/JAHA.123.030934. Epub 2023 Nov 20.

Abstract

BACKGROUND

Coronary heart disease (CHD) is the leading cause of death in the world. Unfortunately, many of the key diagnostic tools for CHD are insensitive, invasive, and costly; require significant specialized infrastructure investments; and do not provide information to guide postdiagnosis therapy. In prior work using data from the Framingham Heart Study, we provided in silico evidence that integrated genetic-epigenetic tools may provide a new avenue for assessing CHD.

METHODS AND RESULTS

In this communication, we use an improved machine learning approach and data from 2 additional cohorts, totaling 449 cases and 2067 controls, to develop a better model for ascertaining symptomatic CHD. Using the DNA from the 2 new cohorts, we translate and validate the in silico findings into an artificial intelligence-guided, clinically implementable method that uses input from 6 methylation-sensitive digital polymerase chain reaction and 10 genotyping assays. Using this method, the overall average area under the curve, sensitivity, and specificity in the 3 test cohorts is 82%, 79%, and 76%, respectively. Analysis of targeted cytosine-phospho-guanine loci shows that they map to key risk pathways involved in atherosclerosis that suggest specific therapeutic approaches.

CONCLUSIONS

We conclude that this scalable integrated genetic-epigenetic approach is useful for the diagnosis of symptomatic CHD, performs favorably as compared with many existing methods, and may provide personalized insight to CHD therapy. Furthermore, given the dynamic nature of DNA methylation and the ease of methylation-sensitive digital polymerase chain reaction methodologies, these findings may pave a pathway for precision epigenetic approaches for monitoring CHD treatment response.

摘要

背景

冠心病(CHD)是世界上的主要死因。不幸的是,许多 CHD 的关键诊断工具不敏感、有创且昂贵;需要大量专门的基础设施投资;并且无法提供指导诊断后治疗的信息。在使用弗雷明汉心脏研究(Framingham Heart Study)数据的先前工作中,我们提供了计算证据,表明整合遗传-表观遗传工具可能为评估 CHD 提供新途径。

方法和结果

在本通讯中,我们使用改进的机器学习方法和来自另外两个队列的数据(总计 449 例病例和 2067 例对照),开发了一种更好的方法来确定有症状的 CHD。使用来自 2 个新队列的 DNA,我们将计算证据转化并验证为人工智能指导的、可临床实施的方法,该方法使用来自 6 个甲基化敏感数字聚合酶链反应和 10 个基因分型检测的输入。使用这种方法,在 3 个测试队列中的总体平均曲线下面积、灵敏度和特异性分别为 82%、79%和 76%。对靶向胞嘧啶-磷酸鸟嘌呤(CpG)位点的分析表明,它们映射到涉及动脉粥样硬化的关键风险途径,提示特定的治疗方法。

结论

我们得出结论,这种可扩展的综合遗传-表观遗传方法可用于有症状 CHD 的诊断,与许多现有方法相比表现良好,并且可能为 CHD 治疗提供个性化的见解。此外,鉴于 DNA 甲基化的动态性质和甲基化敏感数字聚合酶链反应方法的易用性,这些发现可能为监测 CHD 治疗反应的精准表观遗传方法铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c49/10727271/c254428aeee8/JAH3-12-e030934-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验