Suppr超能文献

基于相互作用特异性学习和层次信息的蛋白质-蛋白质相互作用预测

Prediction of protein-protein interaction based on interaction-specific learning and hierarchical information.

作者信息

Tang Tao, Shen Taiguang, Jiang Jing, Li Weizhuo, Wang Peng, Yuan Sisi, Cao Xiaofeng, Liu Yuansheng

机构信息

School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, 210023, Jiangsu, China.

College of Computer Science and Electronic Engineering, Hunan University, Changsha, 410082, Hunan, China.

出版信息

BMC Biol. 2025 Aug 4;23(1):236. doi: 10.1186/s12915-025-02359-9.

Abstract

BACKGROUND

Prediction of protein-protein interactions (PPIs) is fundamental for identifying drug targets and understanding cellular processes. The rapid growth of PPI studies necessitates the development of efficient and accurate tools for automated prediction of PPIs. In recent years, several robust deep learning models have been developed for PPI prediction and have found widespread application in proteomics research. Despite these advancements, current computational tools still face limitations in modeling both the pairwise interactions and the hierarchical relationships between proteins.

RESULTS

We present HI-PPI, a novel deep learning method that integrates hierarchical representation of PPI network and interaction-specific learning for protein-protein interaction prediction. HI-PPI extracts the hierarchical information by embedding structural and relational information into hyperbolic space. A gated interaction network is then employed to extract pairwise features for interaction prediction. Experiments on multiple benchmark datasets demonstrate that HI-PPI outperforms the state-of-the-art methods; HI-PPI improves Micro-F1 scores by 2.62%-7.09% over the second-best method. Moreover, HI-PPI offers explicit interpretability of the hierarchical organization within the PPI network. The distance between the origin and the hyperbolic embedding computed by HI-PPI naturally reflects the hierarchical level of proteins.

CONCLUSIONS

Overall, the proposed HI-PPI effectively addresses the limitations of existing PPI prediction methods. By leveraging the hierarchical structure of PPI network, HI-PPI significantly enhances the accuracy and robustness of PPI predictions.

摘要

背景

蛋白质-蛋白质相互作用(PPI)的预测对于识别药物靶点和理解细胞过程至关重要。PPI研究的快速发展需要开发高效且准确的工具来自动预测PPI。近年来,已经开发了几种强大的深度学习模型用于PPI预测,并在蛋白质组学研究中得到了广泛应用。尽管取得了这些进展,但目前的计算工具在对蛋白质之间的成对相互作用和层次关系进行建模时仍面临局限性。

结果

我们提出了HI-PPI,一种新颖的深度学习方法,它集成了PPI网络的层次表示和用于蛋白质-蛋白质相互作用预测的相互作用特异性学习。HI-PPI通过将结构和关系信息嵌入双曲空间来提取层次信息。然后使用门控相互作用网络提取成对特征以进行相互作用预测。在多个基准数据集上的实验表明,HI-PPI优于现有方法;与次优方法相比,HI-PPI将Micro-F1分数提高了2.62%-7.09%。此外,HI-PPI对PPI网络中的层次组织提供了明确的可解释性。HI-PPI计算的原点与双曲嵌入之间的距离自然地反映了蛋白质的层次水平。

结论

总体而言,所提出的HI-PPI有效地解决了现有PPI预测方法的局限性。通过利用PPI网络的层次结构,HI-PPI显著提高了PPI预测的准确性和鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2b0f/12320375/0083a4105ee1/12915_2025_2359_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验