Suppr超能文献

解决医学影像人工智能中的公平性问题。

Addressing fairness in artificial intelligence for medical imaging.

机构信息

Health Informatics Department, Hospital Italiano de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina.

Universidad Tecnológica Nacional, Ciudad Autónoma de Buenos Aires, Argentina.

出版信息

Nat Commun. 2022 Aug 6;13(1):4581. doi: 10.1038/s41467-022-32186-3.

Abstract

A plethora of work has shown that AI systems can systematically and unfairly be biased against certain populations in multiple scenarios. The field of medical imaging, where AI systems are beginning to be increasingly adopted, is no exception. Here we discuss the meaning of fairness in this area and comment on the potential sources of biases, as well as the strategies available to mitigate them. Finally, we analyze the current state of the field, identifying strengths and highlighting areas of vacancy, challenges and opportunities that lie ahead.

摘要

大量研究表明,人工智能系统在多个场景中可能会系统性且不公平地对某些群体产生偏见。医学成像领域也不例外,人工智能系统开始在这个领域得到越来越多的应用。在这里,我们讨论了这个领域公平性的含义,并对潜在的偏见来源以及可用的缓解策略进行了评论。最后,我们分析了该领域的现状,确定了其优势,并强调了未来的空缺领域、挑战和机遇。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cda4/9357063/0c11aec0a040/41467_2022_32186_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验