Suppr超能文献

推进伤害与暴力预防数据科学中的伦理考量。

Advancing Ethical Considerations for Data Science in Injury and Violence Prevention.

作者信息

Idaikkadar Nimi, Bodin Eva, Cholli Preetam, Navon Livia, Ortmann Leonard, Banja John, Waller Lance A, Alic Alen, Yuan Keming, Law Royal

机构信息

Division of Injury Prevention, National Center for Injury Prevention and Control, Centers for Disease Control and Prevention, Atlanta, GA, USA.

Office of Readiness and Response, Immediate Office of the Director, Centers for Disease Control and Prevention, Atlanta, GA, USA.

出版信息

Public Health Rep. 2025 Jan 20:333549241312055. doi: 10.1177/00333549241312055.

Abstract

Data science is an emerging field that provides new analytical methods. It incorporates novel data sources (eg, internet data) and methods (eg, machine learning) that offer valuable and timely insights into public health issues, including injury and violence prevention. The objective of this research was to describe ethical considerations for public health data scientists conducting injury and violence prevention-related data science projects to prevent unintended ethical, legal, and social consequences, such as loss of privacy or loss of public trust. We first reviewed foundational bioethics and public health ethics literature to identify key ethical concepts relevant to public health data science. After identifying these ethics concepts, we held a series of discussions to organize them under broad ethical domains. Within each domain, we examined relevant ethics concepts from our review of the primary literature. Lastly, we developed questions for each ethical domain to facilitate the early conceptualization stage of the ethical analysis of injury and violence prevention projects. We identified 4 ethical domains: privacy, responsible stewardship, justice as fairness, and inclusivity and engagement. We determined that each domain carries equal weight, with no consideration bearing more importance than the others. Examples of ethical considerations are clearly identifying project goals, determining whether people included in projects are at risk of reidentification through external sources or linkages, and evaluating and minimizing the potential for bias in data sources used. As data science methodologies are incorporated into public health research to work toward reducing the effect of injury and violence on individuals, families, and communities in the United States, we recommend that relevant ethical issues be identified, considered, and addressed.

摘要

数据科学是一个新兴领域,它提供了新的分析方法。它纳入了新颖的数据源(如互联网数据)和方法(如机器学习),这些能够为包括伤害和暴力预防在内的公共卫生问题提供有价值且及时的见解。本研究的目的是描述从事与伤害和暴力预防相关数据科学项目的公共卫生数据科学家的伦理考量,以防止出现意外的伦理、法律和社会后果,如隐私丧失或公众信任丧失。我们首先回顾了基础生物伦理学和公共卫生伦理学文献,以确定与公共卫生数据科学相关的关键伦理概念。确定这些伦理概念后,我们进行了一系列讨论,将它们归类到广泛的伦理领域之下。在每个领域内,我们从对主要文献的回顾中审视了相关的伦理概念。最后,我们为每个伦理领域提出了问题,以促进伤害和暴力预防项目伦理分析的早期概念化阶段。我们确定了4个伦理领域:隐私、负责任的管理、公平即正义以及包容性和参与度。我们认为每个领域的重要性相同,没有一个领域比其他领域更重要。伦理考量的例子包括明确确定项目目标、确定项目中纳入的人员是否有通过外部来源或关联被重新识别的风险,以及评估和尽量减少所用数据源中存在偏差的可能性。随着数据科学方法被纳入公共卫生研究,以努力减少伤害和暴力对美国个人、家庭和社区的影响,我们建议识别、考虑并解决相关的伦理问题。

相似文献

1
Advancing Ethical Considerations for Data Science in Injury and Violence Prevention.
Public Health Rep. 2025 Jan 20:333549241312055. doi: 10.1177/00333549241312055.
4
Current ethical and social issues in epidemiology.
Ann Epidemiol. 2023 Apr;80:37-42. doi: 10.1016/j.annepidem.2023.02.001. Epub 2023 Feb 8.
8
Ethical Development of Digital Phenotyping Tools for Mental Health Applications: Delphi Study.
JMIR Mhealth Uhealth. 2021 Jul 28;9(7):e27343. doi: 10.2196/27343.
10
A scoping review of the ethics frameworks describing issues related to the use of extended reality.
Open Res Eur. 2025 Feb 10;4:74. doi: 10.12688/openreseurope.17283.2. eCollection 2024.

引用本文的文献

1
Sentiment analysis in public health: a systematic review of the current state, challenges, and future directions.
Front Public Health. 2025 Jun 20;13:1609749. doi: 10.3389/fpubh.2025.1609749. eCollection 2025.

本文引用的文献

1
A survey of recent methods for addressing AI fairness and bias in biomedicine.
J Biomed Inform. 2024 Jun;154:104646. doi: 10.1016/j.jbi.2024.104646. Epub 2024 Apr 25.
2
Stigmatizing Language, Patient Demographics, and Errors in the Diagnostic Process.
JAMA Intern Med. 2024 Jun 1;184(6):704-706. doi: 10.1001/jamainternmed.2024.0705.
3
Fairness as an afterthought: An American perspective on fairness in model developer-clinician user collaborations.
PLOS Digit Health. 2023 Nov 20;2(11):e0000386. doi: 10.1371/journal.pdig.0000386. eCollection 2023 Nov.
4
Estimating national and state-level suicide deaths using a novel online symptom search data source.
J Affect Disord. 2023 Dec 1;342:63-68. doi: 10.1016/j.jad.2023.08.141. Epub 2023 Sep 11.
6
Mapping value sensitive design onto AI for social good principles.
AI Ethics. 2021;1(3):283-296. doi: 10.1007/s43681-021-00038-3. Epub 2021 Feb 1.
8
Development of a Machine Learning Model Using Multiple, Heterogeneous Data Sources to Estimate Weekly US Suicide Fatalities.
JAMA Netw Open. 2020 Dec 1;3(12):e2030932. doi: 10.1001/jamanetworkopen.2020.30932.
10
Advancing injury and violence prevention through data science.
J Safety Res. 2020 Jun;73:189-193. doi: 10.1016/j.jsr.2020.02.018. Epub 2020 Mar 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验