Suppr超能文献

使用监督式机器学习对小鼠癫痫发作进行视觉检测。

Visual detection of seizures in mice using supervised machine learning.

作者信息

Sabnis Gautam, Hession Leinani, Mahoney J Matthew, Mobley Arie, Santos Marina, Kumar Vivek

机构信息

The Jackson Laboratory, Bar Harbor, ME USA.

School of Graduate Biomedical Sciences, Tufts University School of Medicine, Boston, MA USA.

出版信息

bioRxiv. 2024 May 30:2024.05.29.596520. doi: 10.1101/2024.05.29.596520.

Abstract

Seizures are caused by abnormally synchronous brain activity that can result in changes in muscle tone, such as twitching, stiffness, limpness, or rhythmic jerking. These behavioral manifestations are clear on visual inspection and the most widely used seizure scoring systems in preclinical models, such as the Racine scale in rodents, use these behavioral patterns in semiquantitative seizure intensity scores. However, visual inspection is time-consuming, low-throughput, and partially subjective, and there is a need for rigorously quantitative approaches that are scalable. In this study, we used supervised machine learning approaches to develop automated classifiers to predict seizure severity directly from noninvasive video data. Using the PTZ-induced seizure model in mice, we trained video-only classifiers to predict ictal events, combined these events to predict an univariate seizure intensity for a recording session, as well as time-varying seizure intensity scores. Our results show, for the first time, that seizure events and overall intensity can be rigorously quantified directly from overhead video of mice in a standard open field using supervised approaches. These results enable high-throughput, noninvasive, and standardized seizure scoring for downstream applications such as neurogenetics and therapeutic discovery.

摘要

癫痫发作是由异常同步的大脑活动引起的,这种活动会导致肌肉张力的变化,如抽搐、僵硬、松弛或有节奏的抽搐。这些行为表现通过视觉检查很明显,并且临床前模型中最广泛使用的癫痫发作评分系统,如啮齿动物的拉辛量表,在半定量癫痫发作强度评分中使用这些行为模式。然而,视觉检查耗时、低通量且部分主观,因此需要可扩展的严格定量方法。在本研究中,我们使用监督机器学习方法开发自动分类器,以直接从无创视频数据预测癫痫发作严重程度。利用小鼠的戊四氮诱导癫痫模型,我们训练仅基于视频的分类器来预测发作期事件,将这些事件结合起来预测一次记录会话的单变量癫痫发作强度以及随时间变化的癫痫发作强度评分。我们的结果首次表明,使用监督方法可以直接从标准开放场地中小鼠的头顶视频对癫痫发作事件和总体强度进行严格量化。这些结果为神经遗传学和治疗发现等下游应用实现了高通量、无创和标准化的癫痫发作评分。

相似文献

1
Visual detection of seizures in mice using supervised machine learning.
bioRxiv. 2024 May 30:2024.05.29.596520. doi: 10.1101/2024.05.29.596520.
2
PTZ-induced seizures in mice require a revised Racine scale.
Epilepsy Behav. 2019 Jun;95:51-55. doi: 10.1016/j.yebeh.2019.02.029. Epub 2019 Apr 24.
3
Semi-supervised automatic seizure detection using personalized anomaly detecting variational autoencoder with behind-the-ear EEG.
Comput Methods Programs Biomed. 2022 Jan;213:106542. doi: 10.1016/j.cmpb.2021.106542. Epub 2021 Nov 17.
5
Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy.
Comput Biol Med. 2015 Sep;64:67-78. doi: 10.1016/j.compbiomed.2015.06.008. Epub 2015 Jun 19.
6
Automated analysis of brain activity for seizure detection in zebrafish models of epilepsy.
J Neurosci Methods. 2017 Aug 1;287:13-24. doi: 10.1016/j.jneumeth.2017.05.024. Epub 2017 Jun 1.
7
Detection of spontaneous seizures in EEGs in multiple experimental mouse models of epilepsy.
J Neural Eng. 2021 Oct 19;18(5). doi: 10.1088/1741-2552/ac2ca0.
8
Inter- and intraobserver agreement of seizure behavior scoring in the amygdala kindled rat.
Epilepsy Behav. 2015 Jan;42:10-3. doi: 10.1016/j.yebeh.2014.10.030. Epub 2014 Dec 10.
10
Epileptic seizure detection by using interpretable machine learning models.
J Neural Eng. 2023 Feb 21;20(1). doi: 10.1088/1741-2552/acb089.

本文引用的文献

1
A new era in quantification of animal social behaviors.
Neurosci Biobehav Rev. 2024 Feb;157:105528. doi: 10.1016/j.neubiorev.2023.105528. Epub 2023 Dec 29.
2
Artificial intelligence in epilepsy phenotyping.
Epilepsia. 2023 Nov 20. doi: 10.1111/epi.17833.
3
GWAS meta-analysis of over 29,000 people with epilepsy identifies 26 risk loci and subtype-specific genetic architecture.
Nat Genet. 2023 Sep;55(9):1471-1482. doi: 10.1038/s41588-023-01485-w. Epub 2023 Aug 31.
4
A machine-vision-based frailty index for mice.
Nat Aging. 2022 Aug;2(8):756-766. doi: 10.1038/s43587-022-00266-0. Epub 2022 Aug 16.
5
Hidden behavioral fingerprints in epilepsy.
Neuron. 2023 May 3;111(9):1440-1452.e5. doi: 10.1016/j.neuron.2023.02.003. Epub 2023 Feb 24.
6
From precision diagnosis to precision treatment in epilepsy.
Nat Rev Neurol. 2023 Feb;19(2):69-70. doi: 10.1038/s41582-022-00756-0.
7
Identifying behavioral structure from deep variational embeddings of animal motion.
Commun Biol. 2022 Nov 18;5(1):1267. doi: 10.1038/s42003-022-04080-7.
9
Genetic Testing to Inform Epilepsy Treatment Management From an International Study of Clinical Practice.
JAMA Neurol. 2022 Dec 1;79(12):1267-1276. doi: 10.1001/jamaneurol.2022.3651.
10
Polygenic scores in biomedical research.
Nat Rev Genet. 2022 Sep;23(9):524-532. doi: 10.1038/s41576-022-00470-z. Epub 2022 Mar 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验