Bahsis Lahoucine, Ablouh El-Houssaine, Hanani Zouhair, Sehaqui Houssine, El Achaby Mounir, Julve Miguel, Stiriba Salah-Eddine
Laboratoire de Chimie Analytique et Moléculaire, LCAM, Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, 4162 Safi, Morocco.
Materials Science, Energy and Nanoengineering Department (MSN), Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, Benguerir 43150, Morocco.
Carbohydr Polym. 2024 Jan 15;324:121501. doi: 10.1016/j.carbpol.2023.121501. Epub 2023 Oct 16.
Heterogenous copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) was performed by using the phosphorylated carbohydrate-based cellulose nanofibers loaded with copper(II) ions. The copper-containing phosphorylated cellulose nanofibers (here after noted Cu(II)-PCNFs) were prepared in two different morphologies, namely the paper and foam ones and characterized by different techniques, including Scanning Electronic Microscopy (SEM), Energy Dispersive X-ray (EDX), Brauner-Emmett-Teller (BET), FT-IR spectroscopy (FTIR), Thermal Gravimetric Analysis (TGA), X-ray Photoelectron spectroscopy (XPS) and Atomic Force Microscopy (AFM). Cu(II)-PCNFs showed high activity in the CuAAC reaction when applied to the ligation of various organic azides and terminal alkynes without any reducing agent, resulting in the regioselective synthesis of 1,4-disubstituted-1,2,3-triazoles in water at room temperature. These nanofibers were recovered and reused with no significant loss of catalytic activity or selectivity. A carbohydrate-based bio-support cellulose as reliable heterogenous catalyst was efficiently developed in view of taking the click chemistry concept to sustainable chemistry.
通过使用负载铜(II)离子的磷酸化碳水化合物基纤维素纳米纤维进行了非均相铜催化的叠氮化物-炔烃环加成反应(CuAAC)。制备了两种不同形态的含铜磷酸化纤维素纳米纤维(以下简称Cu(II)-PCNFs),即纸质和泡沫状,并通过不同技术进行了表征,包括扫描电子显微镜(SEM)、能量色散X射线(EDX)、布鲁诺尔-埃米特-泰勒(BET)、傅里叶变换红外光谱(FTIR)、热重分析(TGA)、X射线光电子能谱(XPS)和原子力显微镜(AFM)。当应用于各种有机叠氮化物和末端炔烃的连接时,Cu(II)-PCNFs在CuAAC反应中表现出高活性,无需任何还原剂,在室温下于水中实现了1,4-二取代-1,2,3-三唑的区域选择性合成。这些纳米纤维被回收并重复使用,催化活性和选择性没有明显损失。鉴于将点击化学概念应用于可持续化学,一种基于碳水化合物的生物载体纤维素作为可靠的非均相催化剂被有效地开发出来。