Huang Minhu, Lee Seunghyeon, Jo Il-Young, Park Hyunbeen, Shim Bong Sup, Yoon Myung-Han
School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
Program in Biomedical Science & Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea; Department of Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea.
Carbohydr Polym. 2024 Jan 15;324:121559. doi: 10.1016/j.carbpol.2023.121559. Epub 2023 Nov 7.
Considering that textile-based sensors are suitable for monitoring/communicating human vital health information, organic electrochemical transistors (OECTs) are considered as an efficient device platform for augmenting the capabilities and effectiveness of smart textile applications in diverse areas. Herein, we investigated the fabrication process and properties of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)-TEMPO-oxidized cellulose nanofiber (CNF) composites as active channel materials for fiber-type OECTs. Utilizing highly crystalline, mechanically rigid, and chemically robust CNFs directly extracted from biomass-derived tunicate, we fabricated PEDOT:PSS-CNF composite fibers with varying CNF portions (0, 5, 10, 20, and 30 %) through a simple one-step wet-spinning process using sulfuric acid-based coagulation media. The addition of CNFs significantly improved the mechanical strength of the composite fibers with Young's modulus up to 13.4 ± 2.1 GPa. Moreover, the fiber-type OECT devices based on the PEDOT:PSS(80 %)-CNF(20 %) composite showed highest carrier mobility (4.0 ± 0.2 cm V s) with the marginal trade-off in volumetric capacitance (57.1 ± 3.7 F/cm), resulting in the decent benchmark performance parameter (μ·C*) of 229 F cm V s. Our findings suggest that the synergistic interaction between PEDOT:PSS and CNFs leads to a significant improvement in fiber properties, and the resulting composite fibers hold great potentials for use in eco-friendly wearable/textile electronics.
考虑到基于纺织品的传感器适用于监测/传达人体重要健康信息,有机电化学晶体管(OECT)被视为增强智能纺织品在不同领域应用能力和有效性的高效器件平台。在此,我们研究了聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)-2,2,6,6-四甲基哌啶氧化物(TEMPO)氧化纤维素纳米纤维(CNF)复合材料作为纤维型OECT活性沟道材料的制备工艺和性能。利用从生物质衍生的被囊动物中直接提取的高结晶度、机械刚性和化学稳定性的CNF,我们通过使用硫酸基凝固介质的简单一步湿法纺丝工艺制备了具有不同CNF比例(0、5、10、20和30%)的PEDOT:PSS-CNF复合纤维。CNF的加入显著提高了复合纤维的机械强度,杨氏模量高达13.4±2.1 GPa。此外,基于PEDOT:PSS(80%)-CNF(20%)复合材料的纤维型OECT器件表现出最高的载流子迁移率(4.0±0.2 cm² V⁻¹ s⁻¹),同时体积电容有一定的权衡(57.1±3.7 F/cm³),从而得到了229 F cm⁻¹ V⁻¹ s⁻¹的良好基准性能参数(μ·C*)。我们的研究结果表明,PEDOT:PSS和CNF之间的协同相互作用导致纤维性能显著改善,所得复合纤维在环保可穿戴/纺织电子产品中具有巨大的应用潜力。