Tseng Hsueh-Sheng, Chen Ying-Lin, Zhang Pin-Yu, Hsiao Yu-Sheng
Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
ACS Appl Mater Interfaces. 2024 Mar 20;16(11):13384-13398. doi: 10.1021/acsami.3c14961. Epub 2024 Mar 8.
Organic electrochemical transistors (OECTs) employing conductive polymers (CPs) have gained remarkable prominence and have undergone extensive advancements in wearable and implantable bioelectronic applications in recent years. Among the diverse arrays of CPs, poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) is a common choice for the active-layer channel in p-type OECTs, showing a remarkably high transconductance for the high amplification of signals in biosensing applications. This investigation focuses on the novel engineering of PEDOT:PSS composite materials by seamlessly integrating several additives, namely, dimethyl sulfoxide (DMSO), (3-glycidyloxypropyl)trimethoxysilane (GOPS), and a nonionic fluorosurfactant (NIFS), to fine-tune their electrical conductivity, self-healing capability, and stretchability. To elucidate the intricate influences of the DMSO, GOPS, and NIFS additives on the formation of PEDOT:PSS composite films, theoretical calculations were performed, encompassing the solubility parameters and surface energies of the constituent components of the NIFS, PEDOT, PSS, and PSS-GOPS polymers. Furthermore, we conducted a comprehensive array of material analyses, which reveal the intricacies of the phase separation phenomenon and its interaction with the materials' characteristics. Our research identified the optimal composition for the PEDOT:PSS composite films, characterized by outstanding self-healing and stretchable capabilities. This composition has proven to be highly effective for constructing an active-layer channel in the form of OECT-based biosensors fabricated onto polydimethylsiloxane substrates for detecting dopamine. Overall, these findings represent significant progress in the application of PEDOT:PSS composite films in wearable bioelectronics and pave the way for the development of state-of-the-art biosensing technologies.
近年来,采用导电聚合物(CPs)的有机电化学晶体管(OECTs)在可穿戴和植入式生物电子应用中备受瞩目,并取得了长足的进展。在众多的CPs中,聚(3,4-乙撑二氧噻吩):聚(苯乙烯磺酸盐)(PEDOT:PSS)是p型OECTs有源层通道的常用选择,在生物传感应用中对信号的高放大表现出极高的跨导。本研究聚焦于通过无缝整合几种添加剂,即二甲基亚砜(DMSO)、(3-缩水甘油氧基丙基)三甲氧基硅烷(GOPS)和非离子氟表面活性剂(NIFS),对PEDOT:PSS复合材料进行新型工程设计,以微调其电导率、自愈能力和拉伸性。为了阐明DMSO、GOPS和NIFS添加剂对PEDOT:PSS复合膜形成的复杂影响,进行了理论计算,包括NIFS、PEDOT、PSS和PSS-GOPS聚合物组成成分的溶解度参数和表面能。此外,我们进行了一系列全面的材料分析,揭示了相分离现象的复杂性及其与材料特性的相互作用。我们的研究确定了PEDOT:PSS复合膜的最佳组成,其具有出色的自愈和拉伸能力。这种组成已被证明对于在基于OECT的生物传感器的有源层通道中构建高度有效,该生物传感器被制造在聚二甲基硅氧烷基体上用于检测多巴胺。总体而言,这些发现代表了PEDOT:PSS复合膜在可穿戴生物电子学中的应用取得了重大进展,并为先进生物传感技术的发展铺平了道路。