Suppr超能文献

DNA 条码等离子体纳米结构用于基于活性的蛋白酶传感。

DNA-Barcoded Plasmonic Nanostructures for Activity-Based Protease Sensing.

机构信息

Department of Chemistry, The University of Texas at Austin, 105 E 24th St., Austin, TX 78712, USA.

Department of Oncology, Dell Medical School, The University of Texas at Austin, 1601 Trinity St., Austin, TX 78712, USA.

出版信息

Angew Chem Int Ed Engl. 2024 Jan 8;63(2):e202310964. doi: 10.1002/anie.202310964. Epub 2023 Dec 7.

Abstract

We report the development of a new class of protease activity sensors called DNA-barcoded plasmonic nanostructures. These probes are comprised of gold nanoparticles functionalized with peptide-DNA conjugates (GPDs), where the peptide is a substrate of the protease of interest. The DNA acts as a barcode identifying the peptide and facilitates signal amplification. Protease-mediated peptide cleavage frees the DNA from the nanoparticle surface, which is subsequently measured via a CRISPR/Cas12a-based assay as a proxy for protease activity. As proof-of-concept, we show activity-based, multiplexed detection of the SARS-CoV-2-associated protease, 3CL, and the apoptosis marker, caspase 3, with high sensitivity and selectivity. GPDs yield >25-fold turn-on signals, 100-fold improved response compared to commercial probes, and detection limits as low as 58 pM at room temperature. Moreover, nanomolar concentrations of proteases can be detected visually by leveraging the aggregation-dependent color change of the gold nanoparticles. We showcase the clinical potential of GPDs by detecting a colorectal cancer-associated protease, cathepsin B, in three different patient-derived cell lines. Taken together, GPDs detect physiologically relevant concentrations of active proteases in challenging biological samples, require minimal sample processing, and offer unmatched multiplexing capabilities (mediated by DNA), making them powerful chemical tools for biosensing and disease diagnostics.

摘要

我们开发了一类新的蛋白酶活性传感器,称为 DNA 编码等离子体纳米结构。这些探针由金纳米粒子与肽-DNA 缀合物(GPD)组成,其中肽是感兴趣的蛋白酶的底物。DNA 作为一种条码,可识别肽并促进信号放大。蛋白酶介导的肽切割将 DNA 从纳米粒子表面释放出来,随后通过基于 CRISPR/Cas12a 的测定法进行测量,作为蛋白酶活性的替代物。作为概念验证,我们展示了 SARS-CoV-2 相关蛋白酶 3CL 和凋亡标记物 caspase 3 的基于活性的多重检测,具有高灵敏度和选择性。GPD 产生了 >25 倍的开启信号,比商业探针提高了 100 倍的响应,在室温下的检测限低至 58 pM。此外,通过利用金纳米粒子的聚集依赖性颜色变化,可以通过视觉检测纳摩尔浓度的蛋白酶。我们通过在三种不同的患者来源的细胞系中检测结直肠癌相关的蛋白酶组织蛋白酶 B,展示了 GPD 的临床潜力。总之,GPD 可以在具有挑战性的生物样本中检测到生理相关浓度的活性蛋白酶,需要的样品处理最少,并提供无与伦比的多重检测能力(由 DNA 介导),使其成为生物传感和疾病诊断的强大化学工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验