Suppr超能文献

基于机器学习的 MRI 放射基因组学对头颈部鳞状细胞癌诱导化疗反应的评估。

Machine Learning-Based MRI Radiogenomics for Evaluation of Response to Induction Chemotherapy in Head and Neck Squamous Cell Carcinoma.

机构信息

Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China (Z.L., J.X.).

Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (R.W., L.W., C.T., J.X., J.F.).

出版信息

Acad Radiol. 2024 Jun;31(6):2464-2475. doi: 10.1016/j.acra.2023.10.054. Epub 2023 Nov 18.

Abstract

RATIONALE AND OBJECTIVES

To develop and validate a radiogenomics model integrating clinical data, radiomics-based machine learning (RBML) classifiers, and transcriptomics data for predicting the response to induction chemotherapy (IC) in patients with head and neck squamous cell carcinoma (HNSCC).

MATERIALS AND METHODS

Radiomics features derived from T2-weighted, pre- and post-contrast-enhanced T1-weighted MRI sequences, clinical data, and RNA sequencing data of 150 patients with HNSCC were included in the study. Analysis of variance or recursive feature elimination was used to reduce radiomics features. Three RBML classifiers were developed to distinguish non-responders from responders. Weighted correlation network analysis (WGCNA) was performed to identify the correlation between clinical data or radiomics features and molecular features; subsequently, protein interaction and functional enrichment analyses were performed. The predictive performance of the radiogenomics model integrating significant clinical variables, RBML classifiers, and molecular features was evaluated using receiver operating characteristic curve analysis.

RESULTS

Five radiomics features and two conventional MRI findings significantly stratified HNSCC patients into responders and non-responders. On WGCNA analysis, 809 genes showed a significant correlation with two radiomics features. Functional enrichment analysis suggested that our proposed radiomics features could reflect the T cell-mediated immune response and immune infiltration of HNSCC. The radiogenomics model showed the highest area under the curve (0.88[95%CI 0.75-0.96]) for predicting IC response, which was better than MRI findings(p = 0.0407) or molecular features(p = 0.004) alone, but showed no significant difference with that of RBML model (p = 0.2254) in test cohort.

CONCLUSION

Merging imaging phenotypes with transcriptomic data improved the prediction of IC response in HNSCC.

摘要

背景与目的

本研究旨在开发并验证一种整合临床数据、基于放射组学的机器学习(RBML)分类器和转录组学数据的放射基因组学模型,用于预测头颈部鳞状细胞癌(HNSCC)患者对诱导化疗(IC)的反应。

材料与方法

纳入了 150 例 HNSCC 患者的 T2 加权、增强前后 T1 加权 MRI 序列的放射组学特征、临床数据和 RNA 测序数据。使用方差分析或递归特征消除法来减少放射组学特征。开发了三个 RBML 分类器来区分无反应者和有反应者。进行加权相关网络分析(WGCNA)以识别临床数据或放射组学特征与分子特征之间的相关性;随后进行蛋白质相互作用和功能富集分析。使用接受者操作特征曲线分析评估整合显著临床变量、RBML 分类器和分子特征的放射基因组学模型的预测性能。

结果

五项放射组学特征和两项常规 MRI 发现可显著将 HNSCC 患者分为有反应者和无反应者。在 WGCNA 分析中,有 809 个基因与两个放射组学特征显著相关。功能富集分析表明,我们提出的放射组学特征可以反映 HNSCC 中的 T 细胞介导的免疫反应和免疫浸润。放射基因组学模型在预测 IC 反应方面表现出最高的曲线下面积(0.88[95%CI 0.75-0.96]),优于 MRI 发现(p=0.0407)或分子特征(p=0.004)单独使用,但在测试队列中与 RBML 模型(p=0.2254)相比无显著差异。

结论

将成像表型与转录组数据融合可提高 HNSCC 对 IC 反应的预测能力。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验