Suppr超能文献

基于机器学习的多参数 MRI 放射组学对头颈部鳞状细胞癌 Ki-67 表达水平的预测:一项多中心研究。

Prediction of the Ki-67 expression level in head and neck squamous cell carcinoma with machine learning-based multiparametric MRI radiomics: a multicenter study.

机构信息

Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, 323000, China.

Clinical College of The Affiliated Central Hospital, School of Medicine, Lishui University, Lishui, 323000, China.

出版信息

BMC Cancer. 2024 Apr 5;24(1):418. doi: 10.1186/s12885-024-12026-x.

Abstract

BACKGROUND

This study aimed to develop and validate a machine learning (ML)-based fusion model to preoperatively predict Ki-67 expression levels in patients with head and neck squamous cell carcinoma (HNSCC) using multiparametric magnetic resonance imaging (MRI).

METHODS

A total of 351 patients with pathologically proven HNSCC from two medical centers were retrospectively enrolled in the study and divided into training (n = 196), internal validation (n = 84), and external validation (n = 71) cohorts. Radiomics features were extracted from T2-weighted images and contrast-enhanced T1-weighted images and screened. Seven ML classifiers, including k-nearest neighbors (KNN), support vector machine (SVM), logistic regression (LR), random forest (RF), linear discriminant analysis (LDA), naive Bayes (NB), and eXtreme Gradient Boosting (XGBoost) were trained. The best classifier was used to calculate radiomics (Rad)-scores and combine clinical factors to construct a fusion model. Performance was evaluated based on calibration, discrimination, reclassification, and clinical utility.

RESULTS

Thirteen features combining multiparametric MRI were finally selected. The SVM classifier showed the best performance, with the highest average area under the curve (AUC) of 0.851 in the validation cohorts. The fusion model incorporating SVM-based Rad-scores with clinical T stage and MR-reported lymph node status achieved encouraging predictive performance in the training (AUC = 0.916), internal validation (AUC = 0.903), and external validation (AUC = 0.885) cohorts. Furthermore, the fusion model showed better clinical benefit and higher classification accuracy than the clinical model.

CONCLUSIONS

The ML-based fusion model based on multiparametric MRI exhibited promise for predicting Ki-67 expression levels in HNSCC patients, which might be helpful for prognosis evaluation and clinical decision-making.

摘要

背景

本研究旨在开发和验证一种基于机器学习(ML)的融合模型,以使用多参数磁共振成像(MRI)术前预测头颈部鳞状细胞癌(HNSCC)患者的 Ki-67 表达水平。

方法

本研究回顾性纳入了来自两个医学中心的 351 例经病理证实的 HNSCC 患者,将其分为训练队列(n=196)、内部验证队列(n=84)和外部验证队列(n=71)。从 T2 加权图像和增强 T1 加权图像中提取放射组学特征并进行筛选。训练了包括 k-最近邻(KNN)、支持向量机(SVM)、逻辑回归(LR)、随机森林(RF)、线性判别分析(LDA)、朴素贝叶斯(NB)和极端梯度提升(XGBoost)在内的 7 种 ML 分类器。使用最佳分类器计算放射组学(Rad)评分并结合临床因素构建融合模型。根据校准、判别、重新分类和临床实用性来评估性能。

结果

最终选择了结合多参数 MRI 的 13 个特征。SVM 分类器的表现最佳,在验证队列中平均 AUC 最高,为 0.851。融合模型将 SVM 基于 Rad 评分与临床 T 分期和 MRI 报告的淋巴结状态相结合,在训练队列(AUC=0.916)、内部验证队列(AUC=0.903)和外部验证队列(AUC=0.885)中均表现出令人鼓舞的预测性能。此外,融合模型比临床模型具有更好的临床获益和更高的分类准确性。

结论

基于多参数 MRI 的 ML 融合模型对头颈部鳞状细胞癌患者 Ki-67 表达水平的预测具有良好的应用前景,可能有助于预后评估和临床决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8b33/10996101/0a92fe4d513d/12885_2024_12026_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验