Department of Mathematics and Statistics, McMaster University, Hamilton, Canada.
Faculty of Pharmacy and the Department of Social and Preventive Medicine, Université de Montréal, Montreal, Canada.
Stat Med. 2024 Jan 30;43(2):342-357. doi: 10.1002/sim.9963. Epub 2023 Nov 20.
In this study, we develop a new method for the meta-analysis of mixed aggregate data (AD) and individual participant data (IPD). The method is an adaptation of inverse probability weighted targeted maximum likelihood estimation (IPW-TMLE), which was initially proposed for two-stage sampled data. Our methods are motivated by a systematic review investigating treatment effectiveness for multidrug resistant tuberculosis (MDR-TB) where the available data include IPD from some studies but only AD from others. One complication in this application is that participants with MDR-TB are typically treated with multiple antimicrobial agents where many such medications were not observed in all studies considered in the meta-analysis. We focus here on the estimation of the expected potential outcome while intervening on a specific medication but not intervening on any others. Our method involves the implementation of a TMLE that transports the estimation from studies where the treatment is observed to the full target population. A second weighting component adjusts for the studies with missing (inaccessible) IPD. We demonstrate the properties of the proposed method and contrast it with alternative approaches in a simulation study. We finally apply this method to estimate treatment effectiveness in the MDR-TB case study.
在这项研究中,我们开发了一种新的方法,用于混合聚合数据(AD)和个体参与者数据(IPD)的荟萃分析。该方法是逆概率加权靶向最大似然估计(IPW-TMLE)的一种改编,最初是为两阶段抽样数据提出的。我们的方法是受一项系统评价的启发,该评价研究了多药耐药结核病(MDR-TB)的治疗效果,其中可用数据包括一些研究的 IPD,但其他研究仅提供 AD。在这种应用中,一个复杂的问题是,患有 MDR-TB 的患者通常会接受多种抗菌药物治疗,而在荟萃分析中考虑的许多研究中并没有观察到所有这些药物。我们在这里关注的是在干预特定药物但不干预其他药物的情况下,对预期潜在结果的估计。我们的方法涉及实施 TMLE,将估计从观察到治疗的研究转移到整个目标人群。第二个加权组件用于调整缺失(不可访问)IPD 的研究。我们在模拟研究中展示了所提出方法的性质,并将其与其他方法进行了对比。最后,我们将该方法应用于 MDR-TB 病例研究中估计治疗效果。