Suppr超能文献

两步靶向极大似然估计在混合聚集和个体参与者数据分析中的应用:以耐多药结核病为例。

Two-stage targeted maximum likelihood estimation for mixed aggregate and individual participant data analysis with an application to multidrug resistant tuberculosis.

机构信息

Department of Mathematics and Statistics, McMaster University, Hamilton, Canada.

Faculty of Pharmacy and the Department of Social and Preventive Medicine, Université de Montréal, Montreal, Canada.

出版信息

Stat Med. 2024 Jan 30;43(2):342-357. doi: 10.1002/sim.9963. Epub 2023 Nov 20.

Abstract

In this study, we develop a new method for the meta-analysis of mixed aggregate data (AD) and individual participant data (IPD). The method is an adaptation of inverse probability weighted targeted maximum likelihood estimation (IPW-TMLE), which was initially proposed for two-stage sampled data. Our methods are motivated by a systematic review investigating treatment effectiveness for multidrug resistant tuberculosis (MDR-TB) where the available data include IPD from some studies but only AD from others. One complication in this application is that participants with MDR-TB are typically treated with multiple antimicrobial agents where many such medications were not observed in all studies considered in the meta-analysis. We focus here on the estimation of the expected potential outcome while intervening on a specific medication but not intervening on any others. Our method involves the implementation of a TMLE that transports the estimation from studies where the treatment is observed to the full target population. A second weighting component adjusts for the studies with missing (inaccessible) IPD. We demonstrate the properties of the proposed method and contrast it with alternative approaches in a simulation study. We finally apply this method to estimate treatment effectiveness in the MDR-TB case study.

摘要

在这项研究中,我们开发了一种新的方法,用于混合聚合数据(AD)和个体参与者数据(IPD)的荟萃分析。该方法是逆概率加权靶向最大似然估计(IPW-TMLE)的一种改编,最初是为两阶段抽样数据提出的。我们的方法是受一项系统评价的启发,该评价研究了多药耐药结核病(MDR-TB)的治疗效果,其中可用数据包括一些研究的 IPD,但其他研究仅提供 AD。在这种应用中,一个复杂的问题是,患有 MDR-TB 的患者通常会接受多种抗菌药物治疗,而在荟萃分析中考虑的许多研究中并没有观察到所有这些药物。我们在这里关注的是在干预特定药物但不干预其他药物的情况下,对预期潜在结果的估计。我们的方法涉及实施 TMLE,将估计从观察到治疗的研究转移到整个目标人群。第二个加权组件用于调整缺失(不可访问)IPD 的研究。我们在模拟研究中展示了所提出方法的性质,并将其与其他方法进行了对比。最后,我们将该方法应用于 MDR-TB 病例研究中估计治疗效果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验