Department of Statistics, McMaster University, Hamilton, Canada.
Faculty of Pharmacy, Université de Montréal, Montreal, Canada.
Stat Methods Med Res. 2019 Dec;28(12):3534-3549. doi: 10.1177/0962280218808817. Epub 2018 Oct 31.
This paper investigates different approaches for causal estimation under multiple concurrent medications. Our parameter of interest is the marginal mean counterfactual outcome under different combinations of medications. We explore parametric and non-parametric methods to estimate the generalized propensity score. We then apply three causal estimation approaches (inverse probability of treatment weighting, propensity score adjustment, and targeted maximum likelihood estimation) to estimate the causal parameter of interest. Focusing on the estimation of the expected outcome under the most prevalent regimens, we compare the results obtained using these methods in a simulation study with four potentially concurrent medications. We perform a second simulation study in which some combinations of medications may occur rarely or not occur at all in the dataset. Finally, we apply the methods explored to contrast the probability of patient treatment success for the most prevalent regimens of antimicrobial agents for patients with multidrug-resistant pulmonary tuberculosis.
本文研究了在多种同时使用的药物情况下进行因果估计的不同方法。我们感兴趣的参数是不同药物组合下的边缘平均反事实结果。我们探索了参数和非参数方法来估计广义倾向评分。然后,我们应用三种因果估计方法(治疗反概率加权、倾向评分调整和有针对性的最大似然估计)来估计感兴趣的因果参数。本文重点关注最常见治疗方案下的预期结果的估计,在包含四种潜在同时使用的药物的模拟研究中比较了这些方法的结果。我们进行了第二次模拟研究,其中一些药物组合在数据集中可能很少出现或根本不出现。最后,我们将探索的方法应用于对比多药耐药性肺结核患者最常见的抗菌药物治疗方案的患者治疗成功率的概率。