Suppr超能文献

多药并发情况下的因果推断:方法比较及在耐多药结核病中的应用。

Causal inference with multiple concurrent medications: A comparison of methods and an application in multidrug-resistant tuberculosis.

机构信息

Department of Statistics, McMaster University, Hamilton, Canada.

Faculty of Pharmacy, Université de Montréal, Montreal, Canada.

出版信息

Stat Methods Med Res. 2019 Dec;28(12):3534-3549. doi: 10.1177/0962280218808817. Epub 2018 Oct 31.

Abstract

This paper investigates different approaches for causal estimation under multiple concurrent medications. Our parameter of interest is the marginal mean counterfactual outcome under different combinations of medications. We explore parametric and non-parametric methods to estimate the generalized propensity score. We then apply three causal estimation approaches (inverse probability of treatment weighting, propensity score adjustment, and targeted maximum likelihood estimation) to estimate the causal parameter of interest. Focusing on the estimation of the expected outcome under the most prevalent regimens, we compare the results obtained using these methods in a simulation study with four potentially concurrent medications. We perform a second simulation study in which some combinations of medications may occur rarely or not occur at all in the dataset. Finally, we apply the methods explored to contrast the probability of patient treatment success for the most prevalent regimens of antimicrobial agents for patients with multidrug-resistant pulmonary tuberculosis.

摘要

本文研究了在多种同时使用的药物情况下进行因果估计的不同方法。我们感兴趣的参数是不同药物组合下的边缘平均反事实结果。我们探索了参数和非参数方法来估计广义倾向评分。然后,我们应用三种因果估计方法(治疗反概率加权、倾向评分调整和有针对性的最大似然估计)来估计感兴趣的因果参数。本文重点关注最常见治疗方案下的预期结果的估计,在包含四种潜在同时使用的药物的模拟研究中比较了这些方法的结果。我们进行了第二次模拟研究,其中一些药物组合在数据集中可能很少出现或根本不出现。最后,我们将探索的方法应用于对比多药耐药性肺结核患者最常见的抗菌药物治疗方案的患者治疗成功率的概率。

相似文献

1
Causal inference with multiple concurrent medications: A comparison of methods and an application in multidrug-resistant tuberculosis.
Stat Methods Med Res. 2019 Dec;28(12):3534-3549. doi: 10.1177/0962280218808817. Epub 2018 Oct 31.
2
Targeted Maximum Likelihood Estimation for Causal Inference in Observational Studies.
Am J Epidemiol. 2017 Jan 1;185(1):65-73. doi: 10.1093/aje/kww165. Epub 2016 Dec 9.
3
Reflection on modern methods: when worlds collide-prediction, machine learning and causal inference.
Int J Epidemiol. 2021 Jan 23;49(6):2058-2064. doi: 10.1093/ije/dyz132.
4
Targeted maximum likelihood based causal inference: Part I.
Int J Biostat. 2010;6(2):Article 2. doi: 10.2202/1557-4679.1211.
6
An application of collaborative targeted maximum likelihood estimation in causal inference and genomics.
Int J Biostat. 2010;6(1):Article 18. doi: 10.2202/1557-4679.1182. Epub 2010 May 17.
8
Estimation of causal effects of multiple treatments in observational studies with a binary outcome.
Stat Methods Med Res. 2020 Nov;29(11):3218-3234. doi: 10.1177/0962280220921909. Epub 2020 May 25.
9
Machine learning in causal inference for epidemiology.
Eur J Epidemiol. 2024 Oct;39(10):1097-1108. doi: 10.1007/s10654-024-01173-x. Epub 2024 Nov 13.
10
Collaborative double robust targeted maximum likelihood estimation.
Int J Biostat. 2010 May 17;6(1):Article 17. doi: 10.2202/1557-4679.1181.

引用本文的文献

2
Estimating the effect of a rifampicin resistant tuberculosis diagnosis by the Xpert MTB/RIF assay on two-year mortality.
PLOS Glob Public Health. 2023 Sep 1;3(9):e0001989. doi: 10.1371/journal.pgph.0001989. eCollection 2023.
3
Comparative effectiveness of adding delamanid to a multidrug-resistant tuberculosis regimen comprised of three drugs likely to be effective.
PLOS Glob Public Health. 2023 Apr 28;3(4):e0000818. doi: 10.1371/journal.pgph.0000818. eCollection 2023.
4
Confounding adjustment methods for multi-level treatment comparisons under lack of positivity and unknown model specification.
J Appl Stat. 2021 Apr 7;49(10):2570-2592. doi: 10.1080/02664763.2021.1911966. eCollection 2022.
5
Modeling treatment effect modification in multidrug-resistant tuberculosis in an individual patientdata meta-analysis.
Stat Methods Med Res. 2022 Apr;31(4):689-705. doi: 10.1177/09622802211046383. Epub 2021 Dec 13.
7
EA3: A softmax algorithm for evidence appraisal aggregation.
PLoS One. 2021 Jun 17;16(6):e0253057. doi: 10.1371/journal.pone.0253057. eCollection 2021.
8
Use of Artificial Intelligence and Machine Learning for Discovery of Drugs for Neglected Tropical Diseases.
Front Chem. 2021 Mar 15;9:614073. doi: 10.3389/fchem.2021.614073. eCollection 2021.

本文引用的文献

1
On adaptive propensity score truncation in causal inference.
Stat Methods Med Res. 2019 Jun;28(6):1741-1760. doi: 10.1177/0962280218774817. Epub 2018 Jul 11.
2
Doubly robust nonparametric inference on the average treatment effect.
Biometrika. 2017 Dec;104(4):863-880. doi: 10.1093/biomet/asx053. Epub 2017 Oct 16.
6
Cumulative Cardiovascular Polypharmacy Is Associated With the Risk of Acute Kidney Injury in Elderly Patients.
Medicine (Baltimore). 2015 Aug;94(31):e1251. doi: 10.1097/MD.0000000000001251.
7
Multidrug resistant tuberculosis.
BMJ. 2015 Feb 26;350:h882. doi: 10.1136/bmj.h882.
9
On regression adjustment for the propensity score.
Stat Med. 2014 Oct 15;33(23):4053-72. doi: 10.1002/sim.6207. Epub 2014 May 14.
10
Clinical consequences of polypharmacy in elderly.
Expert Opin Drug Saf. 2014 Jan;13(1):57-65. doi: 10.1517/14740338.2013.827660. Epub 2013 Sep 27.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验