Suppr超能文献

一种基于刺激诱发电位的生物物理约束脑连接模型。

A biophysically constrained brain connectivity model based on stimulation-evoked potentials.

作者信息

Schmid William, Danstrom Isabel A, Echevarria Maria Crespo, Adkinson Joshua, Mattar Layth, Banks Garrett P, Sheth Sameer A, Watrous Andrew J, Heilbronner Sarah R, Bijanki Kelly R, Alabastri Alessandro, Bartoli Eleonora

机构信息

Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston 77005, Texas, USA.

Department of Neurosurgery, Baylor College of Medicine, 1 Baylor Plaza, Houston 77030, Texas, USA.

出版信息

bioRxiv. 2023 Nov 6:2023.11.03.565525. doi: 10.1101/2023.11.03.565525.

Abstract

BACKGROUND

Single-pulse electrical stimulation (SPES) is an established technique used to map functional effective connectivity networks in treatment-refractory epilepsy patients undergoing intracranial-electroencephalography monitoring. While the connectivity path between stimulation and recording sites has been explored through the integration of structural connectivity, there are substantial gaps, such that new modeling approaches may advance our understanding of connectivity derived from SPES studies.

NEW METHOD

Using intracranial electrophysiology data recorded from a single patient undergoing sEEG evaluation, we employ an automated detection method to identify early response components, C1, from pulse-evoked potentials (PEPs) induced by SPES. C1 components were utilized for a novel topology optimization method, modeling 3D conductivity propagation from stimulation sites. Additionally, PEP features were compared with tractography metrics, and model results were analyzed with respect to anatomical features.

RESULTS

The proposed optimization model resolved conductivity paths with low error. Specific electrode contacts displaying high error correlated with anatomical complexities. The C1 component strongly correlates with additional PEP features and displayed stable, weak correlations with tractography measures.

COMPARISON WITH EXISTING METHODS

Existing methods for estimating conductivity propagation are imaging-based and thus rely on anatomical inferences.

CONCLUSIONS

These results demonstrate that informing topology optimization methods with human intracranial SPES data is a feasible method for generating 3D conductivity maps linking electrical pathways with functional neural ensembles. PEP-estimated effective connectivity is correlated with but distinguished from structural connectivity. Modeled conductivity resolves connectivity pathways in the absence of anatomical priors.

摘要

背景

单脉冲电刺激(SPES)是一种成熟的技术,用于在接受颅内脑电图监测的难治性癫痫患者中绘制功能有效连接网络。虽然通过整合结构连接性探索了刺激和记录部位之间的连接路径,但仍存在很大差距,因此新的建模方法可能会增进我们对SPES研究中衍生的连接性的理解。

新方法

利用从一名接受立体脑电图(sEEG)评估的患者记录的颅内电生理数据,我们采用一种自动检测方法从SPES诱发的脉冲诱发电位(PEP)中识别早期反应成分C1。C1成分被用于一种新颖的拓扑优化方法,模拟从刺激部位的三维电导率传播。此外,将PEP特征与纤维束成像指标进行比较,并根据解剖特征分析模型结果。

结果

所提出的优化模型以低误差解析了电导率路径。显示高误差的特定电极触点与解剖复杂性相关。C1成分与其他PEP特征密切相关,并且与纤维束成像测量显示出稳定的弱相关性。

与现有方法的比较

现有的估计电导率传播的方法基于成像,因此依赖于解剖推断。

结论

这些结果表明,用人颅内SPES数据为拓扑优化方法提供信息是生成将电通路与功能性神经集合联系起来的三维电导率图的可行方法。PEP估计的有效连接性与结构连接性相关但有所区别。在没有解剖先验知识的情况下,模拟的电导率解析了连接路径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f16c/10659345/9e5f9aa07987/nihpp-2023.11.03.565525v1-f0007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验