Suppr超能文献

基于深度学习的像差补偿可提高荧光显微镜的对比度和分辨率。

Deep learning-based aberration compensation improves contrast and resolution in fluorescence microscopy.

作者信息

Guo Min, Wu Yicong, Hobson Chad M, Su Yijun, Qian Shuhao, Krueger Eric, Christensen Ryan, Kroeschell Grant, Bui Johnny, Chaw Matthew, Zhang Lixia, Liu Jiamin, Hou Xuekai, Han Xiaofei, Lu Zhiye, Ma Xuefei, Zhovmer Alexander, Combs Christian, Moyle Mark, Yemini Eviatar, Liu Huafeng, Liu Zhiyi, Benedetto Alexandre, La Riviere Patrick, Colón-Ramos Daniel, Shroff Hari

出版信息

bioRxiv. 2024 Jul 15:2023.10.15.562439. doi: 10.1101/2023.10.15.562439.

Abstract

Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, and resolution. Here we introduce a deep learning-based strategy for aberration compensation, improving image quality without slowing image acquisition, applying additional dose, or introducing more optics into the imaging path. Our method (i) introduces synthetic aberrations to images acquired on the shallow side of image stacks, making them resemble those acquired deeper into the volume and (ii) trains neural networks to reverse the effect of these aberrations. We use simulations and experiments to show that applying the trained 'de-aberration' networks outperforms alternative methods, providing restoration on par with adaptive optics techniques; and subsequently apply the networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution microscopy. In all cases, the improved quality of the restored data facilitates qualitative image inspection and improves downstream image quantitation, including orientational analysis of blood vessels in mouse tissue and improved membrane and nuclear segmentation in embryos.

摘要

光学像差会阻碍厚样品的荧光显微镜检查,降低图像信号、对比度和分辨率。在此,我们介绍一种基于深度学习的像差补偿策略,可在不降低图像采集速度、不增加额外剂量或不在成像路径中引入更多光学元件的情况下提高图像质量。我们的方法:(i)将合成像差引入在图像堆栈浅层采集的图像中,使其类似于在更深层采集的图像;(ii)训练神经网络以消除这些像差的影响。我们通过模拟和实验表明,应用经过训练的“去像差”网络优于其他方法,其提供的恢复效果与自适应光学技术相当;随后将这些网络应用于通过共聚焦、光片、多光子和超分辨率显微镜捕获的各种数据集。在所有情况下,恢复后数据质量的提高有助于定性图像检查,并改善下游图像定量分析,包括小鼠组织中血管的方向分析以及胚胎中膜和细胞核分割的改善。

相似文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验