Suppr超能文献

基于深度学习的像差补偿提高了荧光显微镜的对比度和分辨率。

Deep learning-based aberration compensation improves contrast and resolution in fluorescence microscopy.

作者信息

Guo Min, Wu Yicong, Hobson Chad M, Su Yijun, Qian Shuhao, Krueger Eric, Christensen Ryan, Kroeschell Grant, Bui Johnny, Chaw Matthew, Zhang Lixia, Liu Jiamin, Hou Xuekai, Han Xiaofei, Lu Zhiye, Ma Xuefei, Zhovmer Alexander, Combs Christian, Moyle Mark, Yemini Eviatar, Liu Huafeng, Liu Zhiyi, Benedetto Alexandre, La Riviere Patrick, Colón-Ramos Daniel, Shroff Hari

机构信息

State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China.

Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, Maryland, USA.

出版信息

Nat Commun. 2025 Jan 2;16(1):313. doi: 10.1038/s41467-024-55267-x.

Abstract

Optical aberrations hinder fluorescence microscopy of thick samples, reducing image signal, contrast, and resolution. Here we introduce a deep learning-based strategy for aberration compensation, improving image quality without slowing image acquisition, applying additional dose, or introducing more optics. Our method (i) introduces synthetic aberrations to images acquired on the shallow side of image stacks, making them resemble those acquired deeper into the volume and (ii) trains neural networks to reverse the effect of these aberrations. We use simulations and experiments to show that applying the trained 'de-aberration' networks outperforms alternative methods, providing restoration on par with adaptive optics techniques; and subsequently apply the networks to diverse datasets captured with confocal, light-sheet, multi-photon, and super-resolution microscopy. In all cases, the improved quality of the restored data facilitates qualitative image inspection and improves downstream image quantitation, including orientational analysis of blood vessels in mouse tissue and improved membrane and nuclear segmentation in C. elegans embryos.

摘要

光学像差阻碍了厚样品的荧光显微镜成像,降低了图像信号、对比度和分辨率。在此,我们介绍一种基于深度学习的像差补偿策略,在不降低图像采集速度、不增加额外剂量或不引入更多光学元件的情况下提高图像质量。我们的方法:(i) 对在图像堆栈浅层采集的图像引入合成像差,使其类似于在更深层采集的图像;(ii) 训练神经网络以消除这些像差的影响。我们通过模拟和实验表明,应用经过训练的“去像差”网络优于其他方法,能够提供与自适应光学技术相当的图像恢复效果;随后将这些网络应用于通过共聚焦、光片、多光子和超分辨率显微镜捕获的各种数据集。在所有情况下,恢复后数据质量的提高有助于定性图像检查,并改善下游图像定量分析,包括对小鼠组织中血管的定向分析以及秀丽隐杆线虫胚胎中膜和细胞核分割的改进。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/70fa/11697233/94133f534fc3/41467_2024_55267_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验