Suppr超能文献

模拟空间结构对实体瘤进化及循环肿瘤DNA组成的影响。

Modeling the effect of spatial structure on solid tumor evolution and ctDNA composition.

作者信息

Rachman Thomas, Bartlett David, Laframboise William, Wagner Patrick, Schwartz Russell, Carja Oana

机构信息

Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA.

Joint Carnegie Mellon University-University of Pittsburgh Ph.D. Program in Computational Biology.

出版信息

bioRxiv. 2023 Nov 11:2023.11.10.566658. doi: 10.1101/2023.11.10.566658.

Abstract

Circulating tumor DNA (ctDNA) monitoring, while sufficiently advanced to reflect tumor evolution in real time and inform on cancer diagnosis, treatment, and prognosis, mainly relies on DNA that originates from cell death via apoptosis or necrosis. In solid tumors, chemotherapy and immune infiltration can induce spatially variable rates of cell death, with the potential to bias and distort the clonal composition of ctDNA. Using a stochastic evolutionary model of boundary-driven growth, we study how elevated cell death on the edge of a tumor can simultaneously impact driver mutation accumulation and the representation of tumor clones and mutation detectability in ctDNA. We describe conditions in which invasive clones end up over-represented in ctDNA, clonal diversity can appear elevated in the blood, and spatial bias in shedding can inflate subclonal variant allele frequencies (VAFs). Additionally, we find that tumors that are mostly quiescent can display similar biases, but are far less detectable, and the extent of perceptible spatial bias strongly depends on sequence detection limits. Overall, we show that spatially structured shedding might cause liquid biopsies to provide highly biased profiles of tumor state. While this may enable more sensitive detection of expanding clones, it could also increase the risk of targeting a subclonal variant for treatment. Our results indicate that the effects and clinical consequences of spatially variable cell death on ctDNA composition present an important area for future work.

摘要

循环肿瘤DNA(ctDNA)监测虽然已足够先进,能够实时反映肿瘤演变并为癌症诊断、治疗和预后提供信息,但主要依赖于通过凋亡或坏死从细胞死亡中产生的DNA。在实体瘤中,化疗和免疫浸润可诱导空间上变化的细胞死亡率,这有可能使ctDNA的克隆组成产生偏差并造成扭曲。我们使用边界驱动生长的随机进化模型,研究肿瘤边缘细胞死亡增加如何同时影响驱动突变积累、肿瘤克隆的代表性以及ctDNA中肿瘤克隆和突变的可检测性。我们描述了侵袭性克隆最终在ctDNA中过度代表、血液中克隆多样性可能看似增加以及脱落的空间偏差会使亚克隆变异等位基因频率(VAF)膨胀的条件。此外,我们发现大多处于静止状态的肿瘤可能表现出类似的偏差,但可检测性要低得多,并且可察觉的空间偏差程度强烈取决于序列检测限。总体而言,我们表明空间结构脱落可能导致液体活检提供高度偏差的肿瘤状态概况。虽然这可能使对正在扩张的克隆进行更灵敏的检测成为可能,但也可能增加针对亚克隆变异进行治疗的风险。我们的结果表明,空间可变细胞死亡对ctDNA组成的影响及临床后果是未来工作的一个重要领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2552/10659436/296a86ecc016/nihpp-2023.11.10.566658v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验