Danilevicz Ian Meneghel, van Hees Vincent Theodoor, van der Heide Frank, Jacob Louis, Landré Benjamin, Benadjaoud Mohamed Amine, Sabia Séverine
Université Paris Cité, INSERM, U1153, CRESS, Epidemiology of Ageing and Neurodegenerative Diseases, 10 Av de Verdun, 75010, Paris, France.
Accelting, Almere, the Netherlands.
Res Sq. 2023 Nov 6:rs.3.rs-3543711. doi: 10.21203/rs.3.rs-3543711/v1.
Accelerometers, devices that measure body movements, have become valuable tools for studying the fragmentation of rest-activity patterns, a core circadian rhythm dimension, using metrics such as inter-daily stability (IS), intradaily variability (IV), transition probability (TP), and self-similarity parameter (named ). However, their use remains mainly empirical. Therefore, we investigated the mathematical properties and interpretability of rest-activity fragmentation metrics by providing mathematical proofs for the ranges of IS and IV, proposing maximum likelihood and Bayesian estimators for TP, introducing the activity balance index metric, an adaptation of , and describing distributions of these metrics in real-life setting. Analysis of accelerometer data from 2,859 individuals (age=60-83 years, 21.1% women) from the Whitehall II cohort (UK) shows modest correlations between the metrics, except for ABI and . Sociodemographic (age, sex, education, employment status) and clinical (body mass index (BMI), and number of morbidities) factors were associated with these metrics, with differences observed according to metrics. For example, a difference of 5 units in BMI was associated with all metrics (differences ranging between -0.261 (95% CI -0.302, -0.220) to 0.228 (0.18, 0.268) for standardised TP rest to activity during the awake period and TP activity to rest during the awake period, respectively). These results reinforce the value of these rest-activity fragmentation metrics in epidemiological and clinical studies to examine their role for health. This paper expands on a set of methods that have previously demonstrated empirical value, improves the theoretical foundation for these methods, and evaluates their empirical worth in a large dataset.
加速度计是一种测量身体运动的设备,它已成为研究休息 - 活动模式碎片化的重要工具,休息 - 活动模式碎片化是核心昼夜节律维度,可使用诸如日间稳定性(IS)、日内变异性(IV)、转换概率(TP)和自相似性参数(命名为 )等指标进行研究。然而,它们的使用主要仍基于经验。因此,我们通过为IS和IV的范围提供数学证明、提出TP的最大似然估计和贝叶斯估计、引入活动平衡指数指标( 的一种改编)以及描述这些指标在现实生活中的分布,来研究休息 - 活动碎片化指标的数学性质和可解释性。对来自英国白厅II队列的2859名个体(年龄 = 60 - 83岁,21.1%为女性)的加速度计数据进行分析表明,除ABI和 外,这些指标之间存在适度的相关性。社会人口统计学(年龄、性别、教育程度、就业状况)和临床(体重指数(BMI)以及疾病数量)因素与这些指标相关,且根据指标观察到差异。例如,BMI相差5个单位与所有指标相关(清醒期从休息到活动的标准化TP以及清醒期从活动到休息的TP的差异分别在 -0.261(95% CI -0.302, -0.220)至0.228(0.18,0.268)之间)。这些结果强化了这些休息 - 活动碎片化指标在流行病学和临床研究中用于检查其对健康作用的价值。本文扩展了一组先前已证明具有经验价值的方法,改进了这些方法的理论基础,并在一个大型数据集中评估了它们的经验价值。