Wang Qianru, Tang Tiffany M, Youlton Nathan, Weldy Chad S, Kenney Ana M, Ronen Omer, Weston Hughes J, Chin Elizabeth T, Sutton Shirley C, Agarwal Abhineet, Li Xiao, Behr Merle, Kumbier Karl, Moravec Christine S, Wilson Tang W H, Margulies Kenneth B, Cappola Thomas P, Butte Atul J, Arnaout Rima, Brown James B, Priest James R, Parikh Victoria N, Yu Bin, Ashley Euan A
medRxiv. 2024 May 4:2023.11.06.23297858. doi: 10.1101/2023.11.06.23297858.
The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy. We derive deep learning-based estimates of left ventricular mass from the cardiac MRI scans of 29,661 individuals enrolled in the UK Biobank. We report epistatic genetic variation including variants close to , , , and Several loci where variants were deemed insignificant in univariate genome-wide association analyses are identified. Functional genomic and integrative enrichment analyses reveal a complex gene regulatory network in which genes mapped from these loci share biological processes and myogenic regulatory factors. Through a network analysis of transcriptomic data from 313 explanted human hearts, we found strong gene co-expression correlations between these statistical epistasis contributors in healthy hearts and a significant connectivity decrease in failing hearts. We assess causality of epistatic effects via RNA silencing of gene-gene interactions in human induced pluripotent stem cell-derived cardiomyocytes. Finally, single-cell morphology analysis using a novel high-throughput microfluidic system shows that cardiomyocyte hypertrophy is non-additively modifiable by specific pairwise interactions between and both and . Our results expand the scope of genetic regulation of cardiac structure to epistasis.
基因变异的组合效应通常被认为是相加性的。尽管基因变异显然可以以非相加的方式相互作用,但揭示上位性(基因互作)关系的方法仍处于起步阶段。我们开发了低信号有符号迭代随机森林来阐明心脏肥大的复杂遗传结构。我们从英国生物银行招募的29661名个体的心脏磁共振成像扫描中得出基于深度学习的左心室质量估计值。我们报告了上位性基因变异,包括靠近 、 、 和 的变异。我们识别出了几个在单变量全基因组关联分析中被认为不显著的变异位点。功能基因组和综合富集分析揭示了一个复杂的基因调控网络,其中从这些位点映射的基因共享生物学过程和成肌调节因子。通过对313颗移植的人类心脏的转录组数据进行网络分析,我们发现健康心脏中这些统计上位性贡献者之间存在很强的基因共表达相关性,而在衰竭心脏中连接性显著降低。我们通过对人诱导多能干细胞衍生的心肌细胞中基因 - 基因相互作用进行RNA沉默来评估上位性效应的因果关系。最后,使用新型高通量微流控系统进行的单细胞形态分析表明,心肌细胞肥大可通过 与 以及 之间的特定成对相互作用以非相加的方式进行调节。我们的结果将心脏结构的遗传调控范围扩展到了上位性。