Wang Qianru, Tang Tiffany M, Youlton Michelle, Weldy Chad S, Kenney Ana M, Ronen Omer, Hughes J Weston, Chin Elizabeth T, Sutton Shirley C, Agarwal Abhineet, Li Xiao, Behr Merle, Kumbier Karl, Moravec Christine S, Tang W H Wilson, Margulies Kenneth B, Cappola Thomas P, Butte Atul J, Arnaout Rima, Brown James B, Priest James R, Parikh Victoria N, Yu Bin, Ashley Euan A
Division of Cardiovascular Medicine, Department of Medicine, Stanford University, Stanford, CA, USA.
Department of Statistics, University of California, Berkeley, Berkeley, CA, USA.
Nat Cardiovasc Res. 2025 Jun;4(6):740-760. doi: 10.1038/s44161-025-00656-8. Epub 2025 Jun 5.
Although genetic variant effects often interact nonadditively, strategies to uncover epistasis remain in their infancy. Here we develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy, using deep learning-derived left ventricular mass estimates from 29,661 UK Biobank cardiac magnetic resonance images. We report epistatic variants near CCDC141, IGF1R, TTN and TNKS, identifying loci deemed insignificant in genome-wide association studies. Functional genomic and integrative enrichment analyses reveal that genes mapped from these loci share biological process gene ontologies and myogenic regulatory factors. Transcriptomic network analyses using 313 human hearts demonstrate strong co-expression correlations among these genes in healthy hearts, with significantly reduced connectivity in failing hearts. To assess causality, RNA silencing in human induced pluripotent stem cell-derived cardiomyocytes, combined with novel microfluidic single-cell morphology analysis, confirms that cardiomyocyte hypertrophy is nonadditively modifiable by interactions between CCDC141, TTN and IGF1R. Our results expand the scope of cardiac genetic regulation to epistasis.
尽管基因变异效应常常以非加性方式相互作用,但揭示上位性的策略仍处于起步阶段。在此,我们开发了低信号带符号迭代随机森林,以阐明心脏肥大的复杂遗传结构,利用从29661张英国生物银行心脏磁共振图像中通过深度学习得出的左心室质量估计值。我们报告了CCDC141、IGF1R、TTN和TNKS附近的上位性变异,识别出在全基因组关联研究中被认为不显著的基因座。功能基因组和综合富集分析表明,从这些基因座定位的基因共享生物学过程基因本体和生肌调节因子。使用313颗人类心脏进行的转录组网络分析表明,在健康心脏中这些基因之间存在强烈的共表达相关性,而在衰竭心脏中连接性显著降低。为了评估因果关系,在人类诱导多能干细胞衍生的心肌细胞中进行RNA沉默,并结合新型微流控单细胞形态分析,证实心肌细胞肥大可通过CCDC141、TTN和IGF1R之间的相互作用以非加性方式进行调节。我们的结果将心脏遗传调控的范围扩展到上位性。