Aix Marseille Univ, INSERM, TAGC (UMR1090), Turing Centre for Living systems, Marseille, France.
CNRS, Marseille, France.
Nucleic Acids Res. 2022 Oct 28;50(19):e114. doi: 10.1093/nar/gkac715.
Understanding the relationship between genetic variations and variations in complex and quantitative phenotypes remains an ongoing challenge. While Genome-wide association studies (GWAS) have become a vital tool for identifying single-locus associations, we lack methods for identifying epistatic interactions. In this article, we propose a novel method for higher-order epistasis detection using mixed effect conditional inference forest (epiMEIF). The proposed method is fitted on a group of single nucleotide polymorphisms (SNPs) potentially associated with the phenotype and the tree structure in the forest facilitates the identification of n-way interactions between the SNPs. Additional testing strategies further improve the robustness of the method. We demonstrate its ability to detect true n-way interactions via extensive simulations in both cross-sectional and longitudinal synthetic datasets. This is further illustrated in an application to reveal epistatic interactions from natural variations of cardiac traits in flies (Drosophila). Overall, the method provides a generalized way to identify higher-order interactions from any GWAS data, thereby greatly improving the detection of the genetic architecture underlying complex phenotypes.
理解遗传变异与复杂和定量表型之间的关系仍然是一个持续的挑战。虽然全基因组关联研究(GWAS)已成为识别单基因关联的重要工具,但我们缺乏识别上位性相互作用的方法。在本文中,我们提出了一种使用混合效应条件推断森林(epiMEIF)检测高阶上位性的新方法。该方法适用于一组可能与表型相关的单核苷酸多态性(SNP),并且森林中的树结构有助于识别 SNP 之间的 n 种相互作用。额外的测试策略进一步提高了该方法的稳健性。我们通过在横断面和纵向合成数据集上进行广泛的模拟来证明其检测真正 n 种相互作用的能力。这在一个应用程序中进一步说明了从果蝇(Drosophila)的心脏性状的自然变异中揭示上位性相互作用的能力。总的来说,该方法为从任何 GWAS 数据中识别高阶相互作用提供了一种通用方法,从而极大地提高了对复杂表型遗传结构的检测能力。