Zhao Mengmeng, Xue Gang, He Bingxi, Deng Jiajun, Wang Tingting, Zhong Yifan, Li Shenghui, Wang Yang, He Yiming, Chen Tao, Zhang Jun, Yan Ziyue, Hu Xinlei, Guo Liuning, Qu Wendong, Song Yongxiang, Yang Minglei, Zhao Guofang, Yu Bentong, Ma Minjie, Liu Lunxu, Sun Xiwen, She Yunlang, Xie Dan, Zhao Deping, Chen Chang
Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
Laboratory of Omics Technology and Bioinformatics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
Nat Commun. 2025 Jan 2;16(1):84. doi: 10.1038/s41467-024-55594-z.
Diagnosing lung cancer from indeterminate pulmonary nodules (IPLs) remains challenging. In this multi-institutional study involving 2032 participants with IPLs, we integrate the clinical, radiomic with circulating cell-free DNA fragmentomic features in 5-methylcytosine (5mC)-enriched regions to establish a multiomics model (clinic-RadmC) for predicting the malignancy risk of IPLs. The clinic-RadmC yields an area-under-the-curve (AUC) of 0.923 on the external test set, outperforming the single-omics models, and models that only combine clinical features with radiomic, or fragmentomic features in 5mC-enriched regions (p < 0.050 for all). The superiority of the clinic-RadmC maintains well even after adjusting for clinic-radiological variables. Furthermore, the clinic-RadmC-guided strategy could reduce the unnecessary invasive procedures for benign IPLs by 10.9% ~ 35%, and avoid the delayed treatment for lung cancer by 3.1% ~ 38.8%. In summary, our study indicates that the clinic-RadmC provides a more effective and noninvasive tool for optimizing lung cancer diagnoses, thus facilitating the precision interventions.
从肺内不确定结节(IPL)中诊断肺癌仍然具有挑战性。在这项涉及2032名IPL患者的多机构研究中,我们整合了临床、放射组学以及5-甲基胞嘧啶(5mC)富集区域的循环游离DNA片段组学特征,以建立一个用于预测IPL恶性风险的多组学模型(临床-放射mC模型)。临床-放射mC模型在外部测试集上的曲线下面积(AUC)为0.923,优于单组学模型,以及仅将临床特征与放射组学或5mC富集区域的片段组学特征相结合的模型(所有比较p均<0.050)。即使在调整临床-放射学变量后,临床-放射mC模型的优势依然显著。此外,临床-放射mC模型指导的策略可将良性IPL的不必要侵入性操作减少10.9%至35%,并避免3.1%至38.8%的肺癌延迟治疗。总之,我们的研究表明,临床-放射mC模型为优化肺癌诊断提供了一种更有效且无创的工具,从而有助于精准干预。