Suppr超能文献

基于成人数据训练的传统深度学习 CT 肺结节计算机辅助检测系统在儿童中的性能分析。

Performance Analysis in Children of Traditional and Deep Learning CT Lung Nodule Computer-Aided Detection Systems Trained on Adults.

机构信息

Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469.

Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH.

出版信息

AJR Am J Roentgenol. 2024 Feb;222(2):e2330345. doi: 10.2214/AJR.23.30345. Epub 2023 Nov 22.

Abstract

Although primary lung cancer is rare in children, chest CT is commonly performed to assess for lung metastases in children with cancer. Lung nodule computer-aided detection (CAD) systems have been designed and studied primarily using adult training data, and the efficacy of such systems when applied to pediatric patients is poorly understood. The purpose of this study was to evaluate in children the diagnostic performance of traditional and deep learning CAD systems trained with adult data for the detection of lung nodules on chest CT scans and to compare the ability of such systems to generalize to children versus to other adults. This retrospective study included pediatric and adult chest CT test sets. The pediatric test set comprised 59 CT scans in 59 patients (30 boys, 29 girls; mean age, 13.1 years; age range, 4-17 years), which were obtained from November 30, 2018, to August 31, 2020; lung nodules were annotated by fellowship-trained pediatric radiologists as the reference standard. The adult test set was the publicly available adult Lung Nodule Analysis (LUNA) 2016 subset 0, which contained 89 deidentified scans with previously annotated nodules. The test sets were processed through the traditional FlyerScan (github.com/rhardie1/FlyerScanCT) and deep learning Medical Open Network for Artificial Intelligence (MONAI; github.com/Project-MONAI/model-zoo/releases) lung nodule CAD systems, which had been trained on separate sets of CT scans in adults. Sensitivity and false-positive (FP) frequency were calculated for nodules measuring 3-30 mm; nonoverlapping 95% CIs indicated significant differences. Operating at two FPs per scan, on pediatric testing data FlyerScan and MONAI showed significantly lower detection sensitivities of 68.4% (197/288; 95% CI, 65.1-73.0%) and 53.1% (153/288; 95% CI, 46.7-58.4%), respectively, than on adult LUNA 2016 subset 0 testing data (83.9% [94/112; 95% CI, 79.1-88.0%] and 95.5% [107/112; 95% CI, 90.0-98.4%], respectively). Mean nodule size was smaller ( < .001) in the pediatric testing data (5.4 ± 3.1 [SD] mm) than in the adult LUNA 2016 subset 0 testing data (11.0 ± 6.2 mm). Adult-trained traditional and deep learning-based lung nodule CAD systems had significantly lower sensitivity for detection on pediatric data than on adult data at a matching FP frequency. The performance difference may relate to the smaller size of pediatric lung nodules. The results indicate a need for pediatric-specific lung nodule CAD systems trained on data specific to pediatric patients.

摘要

尽管儿童原发性肺癌较为罕见,但为评估癌症患儿是否存在肺转移,通常会进行胸部 CT 检查。肺结节计算机辅助检测 (CAD) 系统主要使用成人训练数据进行设计和研究,而这些系统在儿科患者中的应用效果尚不清楚。本研究旨在评估使用成人数据训练的传统和深度学习 CAD 系统在检测儿童胸部 CT 扫描中肺结节方面的诊断性能,并比较这些系统对儿童与其他成人的泛化能力。本回顾性研究纳入了儿科和成人的胸部 CT 测试集。儿科测试集包含 59 名患者(男 30 名,女 29 名;平均年龄 13.1 岁;年龄范围 4-17 岁)的 59 次 CT 扫描,扫描时间为 2018 年 11 月 30 日至 2020 年 8 月 31 日;由接受过 fellowship 培训的儿科放射科医生对肺结节进行标注作为参考标准。成人测试集为可公开获取的成人 Lung Nodule Analysis (LUNA) 2016 子集 0,包含 89 份经标注的结节的匿名化扫描。通过传统的 FlyerScan(github.com/rhardie1/FlyerScanCT)和基于深度学习的 Medical Open Network for Artificial Intelligence (MONAI;github.com/Project-MONAI/model-zoo/releases) 肺结节 CAD 系统对测试集进行处理,这两个系统都在单独的成人 CT 扫描数据集上进行了训练。分别计算了 3-30mm 大小的结节的敏感性和假阳性(FP)频率;不重叠的 95%置信区间(CI)表明存在显著差异。在儿科测试数据上,FlyerScan 和 MONAI 的检测灵敏度显著低于成人 LUNA 2016 子集 0 测试数据,分别为 68.4%(288 个结节中有 197 个;95%CI,65.1-73.0%)和 53.1%(288 个结节中有 153 个;95%CI,46.7-58.4%);在成人 LUNA 2016 子集 0 测试数据上,检测灵敏度分别为 83.9%(112 个结节中有 94 个;95%CI,79.1-88.0%)和 95.5%(112 个结节中有 107 个;95%CI,90.0-98.4%)。儿科测试数据中结节的平均大小明显更小(<.001)(5.4 ± 3.1[SD]mm),而成人 LUNA 2016 子集 0 测试数据中结节的平均大小明显更大(11.0 ± 6.2mm)。在匹配 FP 频率的情况下,基于成人训练的传统和深度学习的肺结节 CAD 系统在儿科数据上的检测灵敏度明显低于成人数据。性能差异可能与儿科肺结节的较小尺寸有关。结果表明,需要针对儿科患者的特定数据,开发特定的儿科肺结节 CAD 系统。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验