Huang Bo, Li Jianan, Chen Junjie, Wang Gang, Zhao Jian, Xu Tingfa
IEEE Trans Pattern Anal Mach Intell. 2024 May;46(5):2852-2865. doi: 10.1109/TPAMI.2023.3335338. Epub 2024 Apr 3.
The perception of drones, also known as Unmanned Aerial Vehicles (UAVs), particularly in infrared videos, is crucial for effective anti-UAV tasks. However, existing datasets for UAV tracking have limitations in terms of target size and attribute distribution characteristics, which do not fully represent complex realistic scenes. To address this issue, we introduce a generalized infrared UAV tracking benchmark called Anti-UAV410. The benchmark comprises a total of 410 videos with over 438 K manually annotated bounding boxes. To tackle the challenges of UAV tracking in complex environments, we propose a novel method called Siamese drone tracker (SiamDT). SiamDT incorporates a dual-semantic feature extraction mechanism that explicitly models targets in dynamic background clutter, enabling effective tracking of small UAVs. The SiamDT method consists of three key steps: Dual-Semantic RPN Proposals (DS-RPN), Versatile R-CNN (VR-CNN), and Background Distractors Suppression. These steps are responsible for generating candidate proposals, refining prediction scores based on dual-semantic features, and enhancing the discriminative capacity of the trackers against dynamic background clutter, respectively. Extensive experiments conducted on the Anti-UAV410 dataset and three other large-scale benchmarks demonstrate the superior performance of the proposed SiamDT method compared to recent state-of-the-art trackers.
无人机(也称为无人驾驶飞行器,即UAV)的感知,尤其是在红外视频中的感知,对于有效的反无人机任务至关重要。然而,现有的无人机跟踪数据集在目标大小和属性分布特征方面存在局限性,无法完全代表复杂的现实场景。为了解决这个问题,我们引入了一个名为Anti-UAV410的通用红外无人机跟踪基准。该基准总共包含410个视频,带有超过43.8万个手动标注的边界框。为了应对复杂环境中无人机跟踪的挑战,我们提出了一种名为暹罗无人机跟踪器(SiamDT)的新方法。SiamDT采用了双语义特征提取机制,该机制在动态背景杂波中明确地对目标进行建模,从而能够有效地跟踪小型无人机。SiamDT方法由三个关键步骤组成:双语义区域提议网络(DS-RPN)、通用区域卷积神经网络(VR-CNN)和背景干扰抑制。这些步骤分别负责生成候选提议、基于双语义特征细化预测分数以及增强跟踪器对动态背景杂波的辨别能力。在Anti-UAV410数据集和其他三个大规模基准上进行的大量实验表明,与最近的先进跟踪器相比,所提出的SiamDT方法具有卓越的性能。