Suppr超能文献

使用数据挖掘和人工智能定义机械通气撤机成功的预测因素。

Defining predictors for successful mechanical ventilation weaning, using a data-mining process and artificial intelligence.

机构信息

Medical Intensive Care Unit, CHRU de la Cavale Blanche, Bvd Tanguy-Prigent, 29609, Brest Cedex, France.

LATIM INSERM UMR 1101, Université de Bretagne Occidentale, 29200, Brest, France.

出版信息

Sci Rep. 2023 Nov 22;13(1):20483. doi: 10.1038/s41598-023-47452-7.

Abstract

Mechanical ventilation weaning within intensive care units (ICU) is a difficult process, while crucial when considering its impact on morbidity and mortality. Failed extubation and prolonged mechanical ventilation both carry a significant risk of adverse events. We aimed to determine predictive factors of extubation success using data-mining and artificial intelligence. A prospective physiological and biomedical signal data warehousing project. A 21-beds medical Intensive Care Unit of a University Hospital. Adult patients undergoing weaning from mechanical ventilation. Hemodynamic and respiratory parameters of mechanically ventilated patients were prospectively collected and combined with clinical outcome data. One hundred and eight patients were included, for 135 spontaneous breathing trials (SBT) allowing to identify physiological parameters either measured before or during the trial and considered as predictive for extubation success. The Early-Warning Score Oxygen (EWSO) enables to discriminate patients deemed to succeed extubation, at 72-h and 7-days. Cut-off values for EWSO2 (AUC = 0.80; Se = 0.75; Sp = 0.76), mean arterial pressure and heart-rate variability parameters were determined. A predictive model for extubation success was established including body-mass index (BMI) on inclusion, occlusion pressure at 0,1 s. (P0.1) and heart-rate analysis parameters (LF/HF) both measured before SBT, and heart rate during SBT (global performance 62%; 83%). The data-mining process enabled to detect independent predictive factors for extubation success and to develop a dynamic predictive model using artificial intelligence. Such predictive tools may help clinicians to better discriminate patients deemed to succeed extubation and thus improve clinical performance.

摘要

重症监护病房(ICU)中的机械通气撤机是一个困难的过程,考虑到其对发病率和死亡率的影响,这一过程至关重要。拔管失败和机械通气时间延长都有发生不良事件的重大风险。我们旨在使用数据挖掘和人工智能确定拔管成功的预测因素。这是一个前瞻性的生理和生物医学信号数据仓库项目。一家大学医院的 21 张病床的医疗重症监护病房。正在接受机械通气撤机的成年患者。前瞻性收集机械通气患者的血流动力学和呼吸参数,并将其与临床结果数据相结合。共纳入 108 例患者,进行了 135 次自主呼吸试验(SBT),可识别出试验前或试验期间测量的生理参数,并认为这些参数可预测拔管成功。早期预警评分氧(EWSO)可区分预计拔管成功的患者,在 72 小时和 7 天时。确定了 EWSO2 的截断值(AUC=0.80;Se=0.75;Sp=0.76)、平均动脉压和心率变异性参数。建立了一个包括纳入时体重指数(BMI)、0 秒时闭塞压(P0.1)和心率分析参数(LF/HF)在内的拔管成功预测模型,这些参数均在 SBT 前测量,以及 SBT 期间的心率(总体性能为 62%;83%)。数据挖掘过程能够检测到拔管成功的独立预测因素,并使用人工智能开发了一个动态预测模型。这些预测工具可以帮助临床医生更好地区分预计拔管成功的患者,从而提高临床性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5e87/10665387/93f87a967337/41598_2023_47452_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验