Suppr超能文献

危重症患者机械通气撤机困难的风险预测模型:一项多中心回顾性研究的结果

Risk prediction model for difficulty in weaning from mechanical ventilation in critically ill patients: results from a multicentre retrospective study.

作者信息

Yin Chengfen, Xu Lei, Li Wenxiong, Du Quansheng, Yu Hongzhi, Dou Lin, Chang Limin, Lu Xing, Zhang Shiya, Ma Yunfeng

机构信息

Department of Critical Care Medicine, Tianjin Third Central Hospital, Tianjin, China.

Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China.

出版信息

BMJ Open. 2025 May 15;15(5):e097419. doi: 10.1136/bmjopen-2024-097419.

Abstract

OBJECTIVES

We aimed to establish a diagnostic system using retrospective data to predict difficult wean from mechanical ventilation.

DESIGN

A multicentre retrospective study SETTING: Five tertiary hospitals from China.

PARTICIPANTS

Critically ill patients received mechanical ventilation between January 2018 and December 2022.

PRIMARY AND SECONDARY OUTCOME MEASURES

The primary endpoint was success weaning from mechanical ventilation (>48 hours), reintubation or death, whichever occurred first.

RESULTS

Among 1365 initially screened patients, 703 patients (median age: 69 years; 63.02% male) were included. From 42 factors, 22 (p≤0.10) were identified for multivariate analysis. Subsequently, the lung injury score, brain natriuretic peptide level at 24 hours, 24 hour fluid balance, use of dexmedetomidine, spontaneous breathing trial (continuous positive airway pressure vs other) and endotracheal tube reinsertion were included in the predictive model. The area under the curve value was 0.8888 (95% CI: 0.8382, 0.9394). The sensitivity, specificity, positive predictive value, negative predictive value, accuracy, likelihood ratio (LR)+ and LR- were 0.7559, 0.875, 0.9746, 0.3608, 0.7721, 6.0743 and 0.279, respectively. We established a nomogram model based on the optimal model.

CONCLUSIONS

A model with six factors was established to predict difficult wean from mechanical ventilation in critically ill patients. However, the model should be verified in future well-designed studies before being extended to other populations.

TRIAL REGISTRATION

ChiCTR1900021432. Registered on February 21, 2019; Post-results.

摘要

目的

我们旨在建立一种利用回顾性数据预测机械通气困难撤机的诊断系统。

设计

多中心回顾性研究

背景

来自中国的五家三级医院

参与者

2018年1月至2022年12月期间接受机械通气的重症患者

主要和次要结局指标

主要终点为成功撤机(>48小时)、再次插管或死亡,以先发生者为准。

结果

在1365例最初筛查的患者中,纳入了703例患者(中位年龄:69岁;男性占63.02%)。从42个因素中,确定了22个(p≤0.10)用于多因素分析。随后,肺损伤评分、24小时脑钠肽水平、24小时液体平衡、右美托咪定的使用、自主呼吸试验(持续气道正压通气与其他方式)和气管插管再插入被纳入预测模型。曲线下面积值为0.8888(95%CI:0.8382,0.9394)。敏感性、特异性、阳性预测值、阴性预测值、准确性、阳性似然比(LR)+和阴性似然比(LR)-分别为0.7559、0.875、0.9746、0.3608、0.7721、6.0743和0.279。我们基于最佳模型建立了列线图模型。

结论

建立了一个包含六个因素的模型来预测重症患者机械通气困难撤机。然而,该模型在推广到其他人群之前,应在未来精心设计的研究中进行验证。

试验注册

ChiCTR1900021432。于2019年2月21日注册;结果已公布

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9229/12083323/60d5e4a85c1c/bmjopen-15-5-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验